

Bontnewydd

Bontnewydd Residential Development

Flood Consequence Assessment

ECL.9516.R05.001 Rev: -

March 2023

Prepared for
Kingscrown Land & Commercial
Ltd

Prepared by
Egniol Consulting Ltd
Llys Onnen
Ffordd y Llyn
Parc Menai
Bangor
LL57 4DF

Document Review

Rev	Date	Prepared By	Reviewed By	Approved By
-	16.03.23	PNN	DH	DH

This document has been prepared by EGNIOL CONSULTING Limited (EGNIOL) for the sole use of our client (the "Client") and in accordance with generally accepted consultancy principles and the terms of reference agreed between EGNIOL and the Client. Any information provided by third parties and referred to herein has not been checked or verified by EGNIOL, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of EGNIOL.

T: 01248 355 996

Company no: 06668552

W: www.egniol.com

Offices:

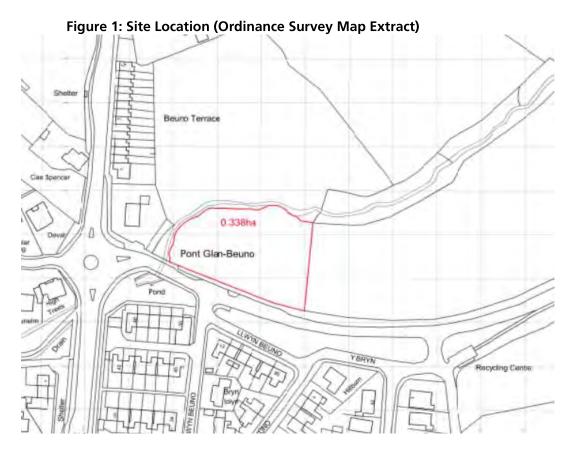
Llys Onnen, Ffordd y Llyn, Parc Menai, Bangor LL57 4DF 6 Canon Harnett Court, Warren Park, Wolverton, Milton Keynes MK12 5NF Office 4, Botanical Gardens Business Centre, 3 Southbourne Rd, Sheffield S10 2QN A323A, Business First, 25 Goodlass Road, Liverpool L24 9HJ

Contents Page 1.0 2.0 2.1 2.2 2.3 2.4 3.0 Policy and Guidance4 3.1 3.2 4.0 4.1 4.2 4.2 5.0 5.1 Surface Water Sewer......9 5.1 Foul Water Sewer9 6.0 6.1 6.2 6.3 7.0 7.1 7.2 8.0 9.0 **Tables Figures** Page

Figure 6: Site Flood Risk – Development Advice Maps (NRW)	10
Figure 7: Surface Water Flooding – Flood Map for Planning (NRW)	11
Figure 8: Flooding from Rivers (Fluvial) – Flood Map for Planning (NRW)	12
Figure 9: Greenfield Run-off Rates (UKSUDs Output)	14
Figure 10: Simulation Criteria	15
Figure 11: Site Plan Overlay with NRW Fluvial Flood Maps	16
<u>Appendices</u>	Appendix
Site Topographical SurveyProposed Surface Water Drainage Layout Plan	1 2
Illustrative Site Masterplan	3
Site Permeability Test Report	
UKSUDs Greenfield Run-off Calculations	

1.0 INTRODUCTION

- 1.0.1 Egniol Consulting Limited (Egniol) of Llys Onnen, Parc Menai, Bangor, Gwynedd have been appointed by Kingscrown Land & Commercial Ltd as Consultants to prepare a Flood Consequence Assessment Report (FCA) for the proposed new residential development at Lon Caeathro, Bontnewydd.
- 1.0.2 The proposed development includes 24 number residential properties and associated hard and soft landscaping. The total development area, including access road and landscaping measures circa 0.338 hectares. The development (Site) is currently greenfield with no utilities servicing the site. Highways access is currently gained via a small gate off of Lon Caeathro.
- 1.0.3 This FCA seeks to set out development principles and guidelines for the proposed residential development. Each residence has allocated parking and access as well as rear gardens. The master planning for the Site has been undertaken by Ainsley Gommon Architects (AGA).
- 1.0.4 The existing site is undeveloped, consisting of an agricultural field. A review of historical record maps show that the site has been undeveloped since at least 1870.
- 1.0.5 The site is located within the Gwynedd Council (GC) which is recognised as a unitary authority and therefore responsible for related Lead Local Flood Authority (LLFA) duties.
- 1.0.6 This assessment has been undertaken in accordance with the latest planning requirements including TAN 15, related policy, and associated guidance specific to GC.


Document Reference: ECL.9516.R05.001 (Rev -)

2.0 SITE DETAILS

2.1 Site Location

2.1.1 The proposed development is located to the northeast of Bontnewydd. Access to the site is gained via Lon Caeathro. The site is approximately located to the below grid coordinates:

E: 248373.00m N: 360169.00m

2.2 Site History

- 2.2.1 An engineering desk study has been carried out by Soil and Structures Ltd (October 2022). This FCA will make references to the findings within this desk study.
- 2.2.2 The site has been subject to one phase of use since the 1870s to the present day, where the Site has been used as a field.

2.3 Site Description

- 2.3.1 The site is rectangular in for, covers approximately 0.338ha, with levels falling from the south-east of the site (42.00m AOD) to the north-west of site (35.12m AOD).
- 2.3.2 The levels along the southern boundary run from 35.88m in the southwest corner to 42.00m in the southeast corner. The levels along the eastern boundary runs from 42.00m in the southeast corner to 37.91m at the north-eastern corner. The northern

boundary runs from 37.91m on the north-eastern corner to 35.37m on the north-western boundary. Refer to **Appendix 1** for site topographical survey for further details on existing levels.

2.3.3 The southern boundary of site is abutted to the existing public highway (Lon Caeathro, maintained by Gwynedd Highways). The eastern boundary abuts an existing grassed field, with existing electricity pylons and associated cables crossing the site in a north easterly direction through the middle of the eastern boundary. The northern and western boundaries of site abut the Afon Bueno river, with existing trees and vegetation lining these boundaries.

2.4 Rivers and Waterways

- 2.4.1 The river Afon Bueno abuts the site's northern and western boundaries. Afon Beuno is an ordinary watercourse and tributary to the Afon Gwyrfai which is main river located about 450m to the west.
- 2.4.2 A review of the Natural Resources Wales Flood Map for Planning shows that the site predominately sits within Flood Zone 1, with Flood Zones 2 and 3 encroaching the sites lower levels along the northern and western boundaries with the Afon Bueno. Figure 2 shows an extract of the Natural Resources Wales Flood Map for Planning.

Layers

TAN15 Defended Zones

Rivers
See
Rivers and See

Flood Zone 3
Flood Zone 5

Recorded Flood Extents

T2 Recorded Flood Extents

Figure 2: Natural Resources Wales Flood Map for Planning Extract

3.0 POLICY AND GUIDANCE

3.1 Policy

3.1.1 The relevant policy has been identified and set out in Table 1 below:

Table 1 – Policy

Policy/Regulations	Key Provisions
Planning Policy Wales (PPW) 10 th Edition (December 2018)	PPW sets out the Welsh Government's plans to deliver the vision for Wales in accordance with the Well-being of Future Generations Act 2015. With respect to flooding it outlines the role of planning and the requirement to understand future flood risk.
Technical Advice Note 15: Development and Flood Risk (TAN15)	TAN 15 provides technical guidance which supplement the policy set out in PPW in relation to development and flooding. The aim of TAN 15 is to direct new development away from those areas which are identified as having a high risk of flooding.
Flood and Water Management Act 2010	The aim is to implement the findings of the 2007 Pitt Review and co-ordinate control of drainage and flood issues.
	Schedule 3 to the Flood and Water Management Act 2010 makes Sustainable Drainage Systems (SuDS) a mandatory requirement for all new developments in Wales. All new developments of more than one dwelling house or where the construction area is 100 m ² or more requires, SuDS for surface water
	From January 2019, SuDS on new developments must be designed and built in accordance with the Statutory SuDS Standards published by the Welsh Ministers and SuDS Schemes must be approved by the local authority acting as SuDS Approval Body (SAB).
Water Framework Directive (2000)	The Water Framework Directive (WFD) came in to force in 2000 and requires all inland and coastal waters to reach 'good' chemical and biological status.
	The main impact of the WFD on flood risk management, both now and in the future, relates to the ecological quality of water bodies.
	Effects on chemical water quality resulting from Flood risk management, is most likely to occur as a result of sediment being disturbed or where pollutants are mobilised from contaminated land by flood waters.

3.2 Guidance

3.2.1 Key relevant guidance has been identified and set out in Table 2 below, a list of standards and best practice considered in preparing the FCA.

Table 2 – Guidance

Standards	Key Provisions	
BS 8533: 2017 Assessing and	This BS gives recommendations and guidance on the	
managing flood risk in	appropriate assessment and management of flood	
development – Code of	risk in developments. It is intended to provide	
Practice	practical assistance for understanding and dealing	
	with the flood risk associated with a proposed	
	development.	
BS 8582: 2013 Code of	The focus of this BS is on the sustainable	
Practice for surface water	management of flood risks arising from surface	
management for development	water run-off on development sites, although criteria	
sites	relating to the management of a wider suite of	
	environmental risks is given. The benefits that can	
	accrue from surface water drainage systems are	
	highlighted and relevant references provided.	
Ciria The SuDS Manual (Cira	General guidance covering the planning, design,	
753)	construction, and maintenance of SuDS aiding the	
	effective implementation within both new and	
	existing developments. The guidance provides a	
	framework for designing SuDS; its contents is	
	relevant for a wide array of professionals.	

4.0 GEOLOGY AND HYDROLOGY

4.1 Geology

- 4.1.1 The following section covers the geology and hydrology of the site. The information given has been taken from the British Geological Survey (BGS) map viewers as well as the site Engineering Desk Study produced by Soil and Structures Ltd (report reference 20206-R-001-V01).
- 4.1.2 The majority of the site bedrock geology is described as Nant Ffancon Subgroup (consisting mainly of sedimentary Siltstone bedrock). The south-eastern section of site consists of the Fachwen Formation (consisting of sedimentary Sandstone and Siltstone bedrock). A fault runs through the site in a northeast to southwest direction. Details are shown below in Figure 3, obtained from the BGS.

A4871

Beuno
Terrace

Afon Beuno

Afon Beuno

Afon Beuno

Afon Beuno

Afon Beuno

Afon Beuno

Figure 3: Bedrock Geology (BGS Map Extract)

4.1.3 The BGS maps show that the site is underlain by superficial deposits of sedimentary Till. Details are shown below in Figure 4 (obtained from BGS).

Figure 4: Superficial Geology (BGS Map Extract)

4.2 Hydrogeology

4.2.1 The aquifer designation for the bedrock geology is deemed to be a secondary (undifferentiated) aquifer, see details provided in Figure 5 (obtained from BGS).

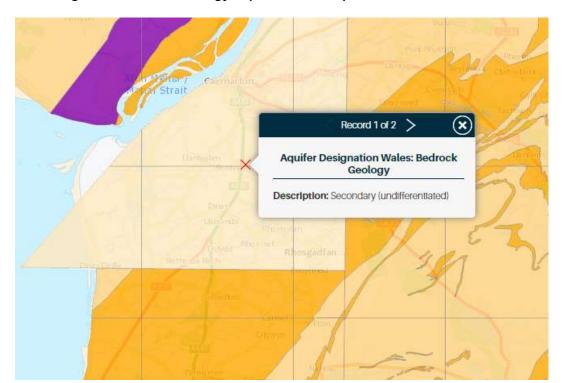


Figure 5: Bedrock Geology Aquifer (BGS Map Extract)

4.2 In-situ testing

On site infiltration tests have been carried out by Datrys (report reference 2007-E-01) which show that the site sub-strata is general impermeable, with the permeability test (TP3) to the west of the site showing infiltration potential.

5.0 EXISTING SEWERS

5.1 Surface Water Sewer

- 5.1.1 The existing site is greenfield and not currently served by any formal surface water drainage.
- 5.1.2 On site infiltration tests demonstrate that the site is suitable for infiltration systems It is proposed that the majority of the site's sustainable drainage will compromise of impermeable techniques, discharging to a SUDs basin which will utilise infiltration as well as a positive discharge to the Afon Bueno, this is covered further below.

5.1 Foul Water Sewer

- 5.2.1 The existing site is not served by any formal foul drainage. It is assumed that a public foul water sewer can be found in Lon Caeathro south of the site.
- 5.2.2 It is proposed that the foul flows from site be discharge via a new connection to the existing public foul water sewer. It is noted that Dwr Cymru Welsh Water (DCWW) is the sewerage undertaker owning and maintaining foul water sewers in this area.

Document Reference: ECL.9516.R05.001 (Rev -)

6.0 FLOOD RISK

6.1 General

- 6.1.1 This section seeks to confirm which form of flooding the Site is most at risk from. The forms of flooding considered include the following as defined in BS 8533:
 - Flooding from Rivers (fluvial flood risk)
 - Flooding from the Sea (tidal flood risk)
 - Flooding from the Land (pluvial flood risk)
 - Flooding from Reservoirs, Canals, and other Artificial Structures

6.2 Flood Zone Delegation

6.2.1 The proposed site is north of Bontnewydd Town Centre. The Development Advice Maps provided by Natural Resources Wales (NRW) identifies the Site as being in Zone A. Zone A is considered 'to be at little or no risk of fluvial or coastal/tidal flooding'. Refer to Figure 6 for site Flood Risk as shown on NRWs development Advice Maps.

Figure 6: Site Flood Risk - Development Advice Maps (NRW)

6.3 Flood Risk

6.3.1 The different types of flood risk are considered in more detail in the following sections. Information regarding long term flood risk is provided within the Flood Map for Planning portal on the NRW website.

6.3.2 Flood Risk from Sea

The site sits within an area at no risk of flooding from the Sea.

6.3.3 Flood Risk from Surface Water (Pluvial)

There are no areas of the site affected by surface water flooding according to the NRW Flood Map for Planning portal. Refer to Figure 7 below.

Figure 7: Surface Water Flooding – Flood Map for Planning (NRW)

6.3.4 Flood Risk from Rivers (Fluvial)

As mentioned in section 2.4.1, the small area of site adjacent to the Afon Bueno sit within Flood Zones 2 and 3. The proposed residential development will be sited outside of the river flood zone with minimal works taking plan within the flood zone extent. Refer to Figure 8 for extent of Fluvial flooding as shown on the NRW Flood Map for Planning portal.

6.3.5 Flood Risk from Reservoirs.

The NRW FRAW maps show no flooding from reservoirs within the proximity of the site, therefore it is concluded that the site is not at risk of flooding due to reservoirs, canals and other artificial structures.

7.0 SURFACE WATER DRAINAGE STRATEGY

7.1 General

- 7.1.1 The development proposals include 24no. residential units with associated hard and soft landscaped areas. The surface water runoff from the hard surfaces will need to be managed. The hierarchy of disposal of surface water from new development are generally accepted as being the following:
 - o Discharge by infiltration to the ground
 - o Discharge to an open surface water body
 - o Discharge to a surface water sewer
- 7.1.2 The principles that set out the preferred method of disposal of surface water runoff generated by the new development are set out in the following sections. Essentially a set of principles are to be assigned to the development. Due to the variable permeability capabilities of the sites sub-strata, infiltration techniques will be used in conjunction with a positive discharge to the Afon Bueno to disperse the surface water run-off generated by the development.
- 7.1.3 The strategy for dealing with the surface water discharge and attenuation is illustrated within the Proposed Site Drainage Layout Plan in **Appendix 2**.
- 7.1.4 The application of sustainable urban drainage system (SuDS) is primarily driven by the nature of the residential development illustrated on the masterplan (**Appendix 3**). The development proposals include a mixture of hard and soft landscaping with numerous opportunities available utilise suds drainage techniques to dispose of surface water run-off. Taking into consideration the triarchy of suds design philosophy, quality, quantity and amenity, the following SuDS features that have been incorporated into the design include the following:
 - o Porous permeable paving
 - o Rainwater Harvesting
 - o Raingardens
 - o Attenuation/Infiltration Basin
- 7.1.5 Permeability testing has shown that only a western section of the site's sub-strata is permeable with an infiltration rate of 3.54x10⁻⁵ m/s. Due to the variedness of the sites permeability it is envisaged that the majority of the proposed SUDs devices will be designed without an allowance for infiltration whilst the main site attenuation basin will utilise infiltration as well as a positive outfall to the Afon Bueno. Refer to **Appendix 4** for site permeability testing report produced by Datrys.
- 7.1.6 The associated MicroDrainage source control calculations for the proposed development's surface water drainage system are attached within **Appendix 5**.
- 7.1.7 The surface water discharge from development is to be discharged at the existing greenfield run-off rate to the Afon Bueno, with infiltration techniques used where the site sub-strata allows.
- 7.1.8 The surface water run-off generated by roofs and private hardstanding areas (such as car parking bays and footpaths to the frontage of the buildings) are to discharge to attenuated permeable paving to the front of the proposed properties prior to discharging to the below ground surface water drainage network via orifice flow

Egniol Consulting Ltd Document Reference: ECL.9516.R05.001 (Rev -)

control devices. Sedimentation control is to be provided through the use of upstream catchpits with the car parking sub-base providing pollution treatment within the granular material sub-matrix.

7.1.9 Surface water run-off from the new access road and public hardstanding areas are to discharge to the below ground drainage network prior to discharging to the site attenuation basin located to the west of the development. Additional storage is provided throughout development for low intensity storms using raingardens. Sedimentation control is provided using sumped gullies and catchpits, with further pollution control provided within the attenuation basin and raingarden storage matrix.

7.2 Flood Mitigation

7.2.1 Design Parameters

The design of the flood mitigation for the development is based on the following:

o Storm design: 1 in 100 year return period

o Climate change: 40%

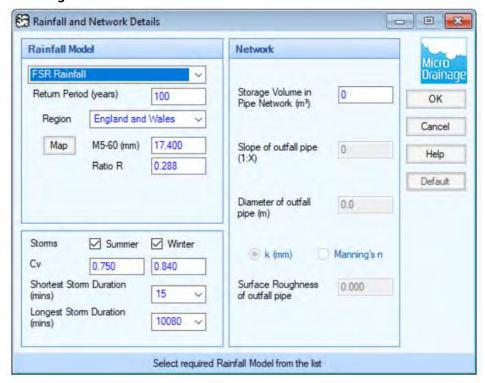
o Rainfall: Flood Studies Report o Restricted discharge: Runoff restricted to 5 l/s

o Infiltration: 3.54 x 10⁻⁵ m/s (west of site only)

7.2.2 Restricted Discharge Rate

Given the variable permeability of the site it is proposed that the site surface water run-off be attenuated within an attenuation basin to the west of the site prior to discharging to the Afon Bueno at a restricted greenfield discharge rate. Using the UKSUDs Greenfield Run-off calculation tool the Qbar discharge rate for the proposed site was calculated as 1.22 l/s. As per CIRIA guidance, due to the risk of blockage of a proposed flow control device at a discharge rate of 1.22l/s by vegetation and other material the proposed restricted discharge rate from development is to be set at 5.0 l/s. Refer to **Appendix 6** for UKSUDs greenfield run-off rate calculations, greenfield run-off rates are summarised below in Figure 9.

Figure 9: Greenfield Run-off Rates (UKSUDs Output)


Document Reference: ECL.9516.R05.001 (Rev -)

7.2.3 Flood Mitigation

Preliminary flood mitigation volumes for site were calculated using MicroDrainage's Source Control module. The figure below shows the criteria used for the proposed design.

Figure 10: Simulation Criteria

7.2.3 Using the MicroDrainage Source Control module and cascade tool to model the proposed surface water storage requirements for the 1 in 100 year (plus 40% allowance for climate change) within the permeable car parks and attenuation

basin, the total amount of flood mitigation storage on site was calculated to be 84.5m³.

7.2.4 Other SUDS Options

The options to introduce further SUDS features is reliant upon the respective unit developer's requirements considering the amount of roofs and hardstanding, the probable secondary options include the following:

- o Green roofs
- o Rainwater harvesting

7.2.5 Water Quality

The surface water runoff from each unit will require base level of treatment, this is expected to be provided by the provision of trapped gullies and catchpits; this will ensure detritus and hydrocarbons are intercepted. Sections 7.1.9 to 7.1.11 highlight the water quality control measures allowed for within the design.

7.2.6 Afon Bueno Flood Plain

As previously mentioned the proposed development's western and northern boundaries encroach the existing Afon Bueno flood plains (as shown on the NRW Flood Maps for Planning). To ensure that the built development footprint does not sit within this area and that the works are kept to a minimum within the flood plain an extract of the flood maps has been scaled and overlaid on to the proposed topographical survey and the proposed development orientated with this in mind (see Figure 11 below).

Figure 11: Site Plan Overlay with NRW Fluvial Flood Maps

7.2.7 The development has been designed such that the access road and residential development do not encroach the existing flood plain. Development levels will be set higher than the existing; and a retaining wall introduced between the higher

- development area and the lower Afon Bueno flood plain to ensure that the flood risk is dealt with safely. (refer to Appendix 3, Architects illustrative masterplan). In terms of access and egress, vehicular access is gained directly off the existing highway, Lon Caeathro, which will sit lower than the proposed development levels.
- 7.2.8 The introduction of a retaining wall to the northern and western boundary seeks to address any residential flood risk relating from storm events in excess of the 1:100 year events (plus climate). The level of this wall is to be set according to.....

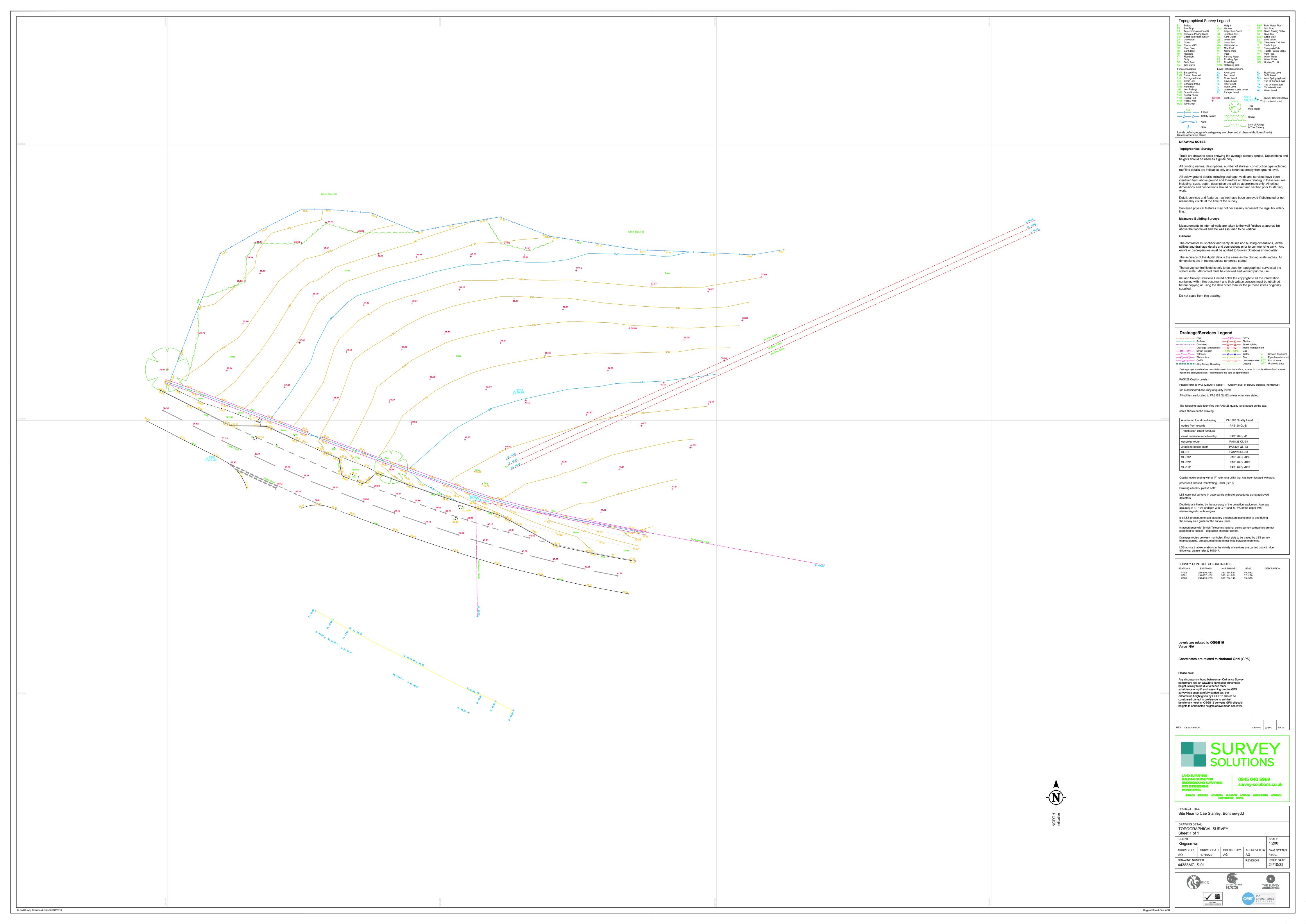
8.0 SURFACE WATER MANAGEMENT

- 8.0.1 The management of the surface water system is to be carried out in line with the generic surface water management plan provided in **Appendix 7**.
- 8.0.2 The above surface water management plan may be supplemented during the development construction phase with further measures. Further measures to be considered by the contractor as part of the ongoing risk assessments and method statements pertinent to the works.

9.0 CONCLUSION

- 9.0.1 The proposed development consists of twenty four dwellings contained within an existing greenfield site to the north of Bontnewydd. The 0.338hectare development will be constructed in in a single phase; construction access will be gained via a new bellmouth with Lon Caeathro.
- 9.0.2 Due to the variable permeability of the existing site sub-strata, soakaway devices are considered suitable for the west of the site only and are deemed inappropriate means of disposing surface water run-off from the entirety of the development. Therefore, attenuated permeable car parking and raingardens will be utilised to the east and centre of the site, with an unlined attenuation basin to the west of the site which will utilise a positive restricted connection to the Afon Bueno as well infiltration.
- 9.0.3 The proposed surface water drainage solution for the development utilises attenuated (or lined) permeable block paved car parks, raingardens and an attenuation basin to discharge the surface water run-off primarily to the local watercourse with some infiltration to ground. Flood mitigation is to be designed for the 1 in 100-year storm event plus 40% allowance for climate change.
- 9.0.4 Water quality within the development is to be managed by implementing appropriate surface water system; this will comprise of trapped gullies and catchpits as appropriate and in line with Building Regulations. Further interception of hydrocarbons is expected to occur via the permeable paved car parking. The proposed suds devices will also provide a betterment in water quality being dispersed from the proposed development.
- 9.0.5 The overland flows are expected to follow the general topography of the site which falls from the southeast of the site to the northwest. It is anticipated that the site levels will be designed such as to allow any overland flooding events to be retained within the site boundary.
- 9.0.6 The management of surface water systems is anticipated to be carried out by the residents and developers; this should be carried out in accordance with a recommended surface water management plan.

Document Reference: ECL.9516.R05.001 (Rev -)

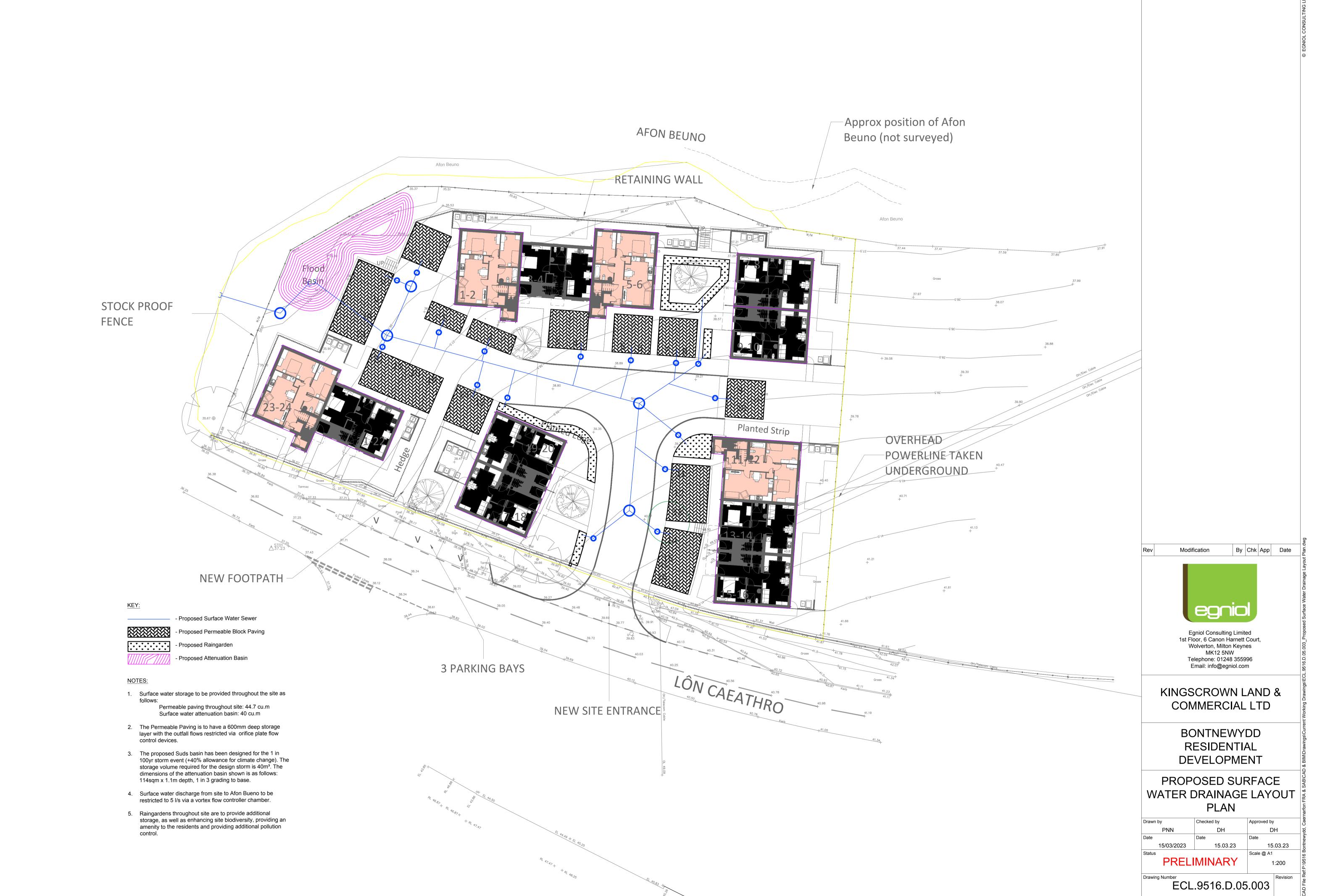

Bontnewydd Residential Development

Flood Consequence Assessment ECL.9516.R05.001 Rev -

March 2023

Appendix 1

Site Topographical Survey


Bontnewydd Residential Development

Flood Consequence Assessment ECL.9516.R05.001 Rev -

March 2023

Appendix 2

Proposed Surface Water Drainage Layout Plan

Bontnewydd Bontnewydd Residential Development

Flood Consequence Assessment ECL.9516.R05.001 Rev -

March 2023

Appendix 3

Illustrative Site Masterplan

Bontnewydd Residential Development

Flood Consequence Assessment ECL.9516.R05.001 Rev -

March 2023

Appendix 4

Site Permeability Test Report

Site at Bontnewydd for Kingscrown Land and Commercial

Porosity Report

February 2023

Site at Bontnewydd for Kingscrown Land and Commercial

Porosity Report

Client: Kingscrown Group

Report Status: Final

Written By: Adam Caldwell

Date: February 2023

REPORT REF: 23007/E/01

	Contents	Page
1	INTRODUCTION	1
2	GENERAL OVERVIEW	2
3	SITE CONDITIONS	3
4	SOIL INFILTRATION RESULTS	4
5	CONCLUSIONS	5
	APPENDIX	
	A. Porosity Pit Location Plan B. Porosity Calculations	

REPORT REF: 23007/E/01

1. INTRODUCTION

In accordance with your instructions, Datrys undertook porosity tests at the site of a proposed new housing development on the 1st & 2nd February 2023.

In carrying out these tests Datrys did not encounter any services & utilities or below ground structures.

A pre-soak exercise was undertaken on the 1st February with testing commencing the subsequent day with tests in all intended positions undertaken as desired.

The results of the tests were recorded for evaluation and future design purposes.

The intention of the testing was to identify ground permeability for potential use of soakaways for surface water design.

REPORT REF: 23007/E/01 1

2. GENERAL OVERVIEW

The site is agricultural land located immediately east of Bontnewydd Roundabout at National Grid Reference SH 48415 60163.

The purpose of the investigation was to undertake Soil Infiltration tests in accordance with BRE Digest 365 and Building Regulations Part H.

The porosity pits were undertaken within the site boundary and located in grassed areas as indicated within the attached plan (**Appendix A**). Three Trial Pits were first undertaken to understand the make-up of the ground strata, to ascertain if will encounter groundwater and to identify an appropriate depth for testing.

Each pit consisted of an organic topsoil layer underlain by a well graded gravelly sand atop a medium dense clay strata, the boundary of the lower differing strata ranging from 1m - 1.9m depth across the pits.

Porosity pits were then dug to a pre-determined depth based on the trial pit findings within the well graded gravelly sand layer. A pre-soak was then undertaken in each and the pits made secure and left overnight.

The purpose of this report is to ascertain the infiltration values of the underlying strata for the design of surface water soakaways.

REPORT REF: 23007/E/01 2

3. SITE CONDITIONS

The weather at the time of the investigation was dry and was preceded by a relatively dry period. No rain fell overnight with it remaining dry for the duration of the testing.

The site topography consists of a gradual fall from east to west with a steepening incline down toward the adjacent watercourse. The site topography appears consistent with the surrounding land which indicates that the site has remained at its natural level.

The nearest watercourse (Afon Beuno) runs along the north and western boundary of the site. The flood mapping for the area suggests this watercourse is at high risk of flooding but appears to be mostly on the opposite side, outside the site extent.

The trial pits indicated that the site comprises of an approximately 300mm organic topsoil underlain by a well graded gravelly sand of varying thickness ranging from 0.7-1.6m. A medium dense clay strata containing gravels and cobbles made up the remainder of the test pit depths down to the maximum reach of the excavator, approximately 2.5m. Its possible that some fill has been deposited in the centre of the site around the area of P2.

Groundwater was not encountered within any of the pits.

REPORT REF: 23007/E/01 3

4. SOIL INFILTRATION RESULTS

Despite the pre-soak being undertaken in the well graded gravelly sand, P1 and P2 failed to have that pre-soak drain away by the next day and the water remained in the pits throughout the 2nd day.

P3 was dry on return to site on day 2, thus only this pit was subjected to porosity testing. Three tests were undertaken in P3 with the results given below. The results indicated a trend of the rate slowing from test to test so a 4th test was undertaken to determine if the trend continued. The reduction in the 2-4th test was relatively minimal.

Results:

P1	Depth	Ground	Soil Infiltration Rate (m/s)	Comments
	(m)	Water Depth		
Pre-soak	1.50	N/A	N/A	Pre-soak did not drain 100mm remained in pit from day 1

P2	Depth	Ground	Soil Infiltration Rate (m/s)	Comments
	(m)	Water Depth		
Pre-soak	1.00	N/A	N/A	Pre-soak did not drain 220mm remained in pit from day 1

Р3	Depth	Ground	Soil Infiltration Rate (m/s)	Comments
	(m)	Water Depth		
Pre-soak	1.00	N/A	N/A	Fully drained
Test 1	1.00	N/A	5.35x10 ⁻⁵	
Test 2	1.00	N/A	3.71x10 ⁻⁵	
Test 3	1.00	N/A	3.54x10 ⁻⁵	
Test 4	1.00	N/A	3.49x10 ⁻⁵	Undertaken to see if continued to slow

REPORT REF: 23007/E/01 4

5. CONCLUSIONS

Our findings indicate that the site ground conditions vary across the site with areas of the site offering no capacity for infiltration whilst the western side of the site suggests a good capacity for infiltration. However, the depth of suitable ground is limited to approximately 1.4m with the underlying strata consisting of a predominately clay soil.

Some further trial pits were then undertaken to attempt to ascertain if the ground conditions remained the same local to TP3 and P3. TP4, 5 and 6 where undertaken with TP6 being between TP3 and P2 to ascertain if there was any noticeable difference in material encountered. It had been noted that P2 appeared to suggest the upper 1.0m could be fill with some shale fragments and larger granular material. TP5 appeared to give the same strata log as TP3 whilst TP4 suggested the layer suitable for infiltration is limited to 1.2m depth. TP6 sides were not stable and the material was noted to be closer in similarity to that encountered in P2.

In conclusion, there appears to be a suitable albeit relatively shallow area of material that could afford an opportunity for infiltration in the western side of the site with a rate of 3.54x10⁻⁵ to be applied in any design calculations.

Given the free draining material is somewhat limited in depth, infiltration may not be achievable for the whole site. It is possible that any design could use a soakaway or an infiltration basin with high level overflow to the watercourse to address more significant design events.

If the development does not afford adequate space to accommodate soakaways, then an alternative means of discharge should be investigated following the hierarchy set out by SUDS and the Building Regulations.

REPORT REF: 23007/E/01 5

APPENDIX

REPORT REF: 23007/E/01 6

APPENDIX A - POROSITY PIT LOCATION PLAN

REPORT REF: 23007/E/01 A

APPENDIX B - POROSITY CALCULATIONS

REPORT REF: 23007/E/01 B

Unit 6 Doc Fictoria Caernarfon Gwynedd LL55 1TH

23007 Project:

Bontnewydd Porosity Pit 3, Test 1 02.02.23 Title: Ref:

Test Date:

Tel 01286 671027

Trial Pit Dimensions: Length (m) 0.3 Width (m) Depth (m) 0.3

Time	Depth to water	Rate of change	Actual Water Depth
(mins)	(m)	(m/min)	(m)
0	0.700		0.300
10	0.800	0.01000	0.200
20	0.910	0.01100	0.090
27	0.950	0.00571	0.050

Max effective storage depth	0.30 m
Volume Outflow, Vp75-25	0.01 m3
Surface Area, ap50	0.27 m2
Time Taken, tp75-25	16 min
Soil Infiltration Rate, f	5.35E-05 m/s

75% depth (m) 0.23 Calc 75% time (min) 25% depth (m) 0.08 Calc 25% time (min) 23

۷p 6.24 s/mm

Unit 6 Doc Fictoria Caernarfon Gwynedd LL55 1TH

23007 Project:

Bontnewydd Porosity Pit 3, Test 2 02.02.23 Title: Ref:

Test Date:

Tel 01286 671027

Trial Pit Dimensions: Length (m) 0.3

Width (m)

Depth (m)

Time	Depth to water	Rate of change	Actual Water Depth
(mins)	(m)	(m/min)	(m)
0	0.700		0.300
10	0.790	0.00900	0.210
20	0.830	0.00400	0.170
30	0.910	0.00800	0.090
37	0.950	0.00571	0.050

0.30 m
0.01 m3
0.27 m2
22 min
3.71E-05 m/s

75% depth (m) 25% depth (m) 0.23 Calc 75% time (min) 10 0.08 Calc 25% time (min) 33

۷p 8.98 s/mm

Unit 6 Doc Fictoria Caernarfon Gwynedd LL55 1TH

Project: Title:

23007 Bontnewydd Porosity Pit 3, Test 3 02.02.23 Ref:

Test Date:

Tel 01286 671027

Trial Pit Dimensions: Length (m) 0.3

Width (m)

Depth (m)

Time	Depth to water	Rate of change	Actual Water Depth
(mins)	(m)	(m/min)	(m)
0	0.700		0.300
10	0.790	0.00900	0.210
20	0.830	0.00400	0.170
30	0.875	0.00450	0.125
37	0.950	0.01071	0.050

Max effective storage depth	0.30 m
Volume Outflow, Vp75-25	0.01 m3
Surface Area, ap50	0.27 m2
Time Taken, tp75-25	24 min
Soil Infiltration Rate, f	3.54E-05 m/s

75% depth (m) 25% depth (m) 0.23 Calc 75% time (min) 11 0.08 Calc 25% time (min) 34

۷p 9.43 s/mm

Unit 6 Doc Fictoria

Caernarfon Gwynedd LL55 1TH

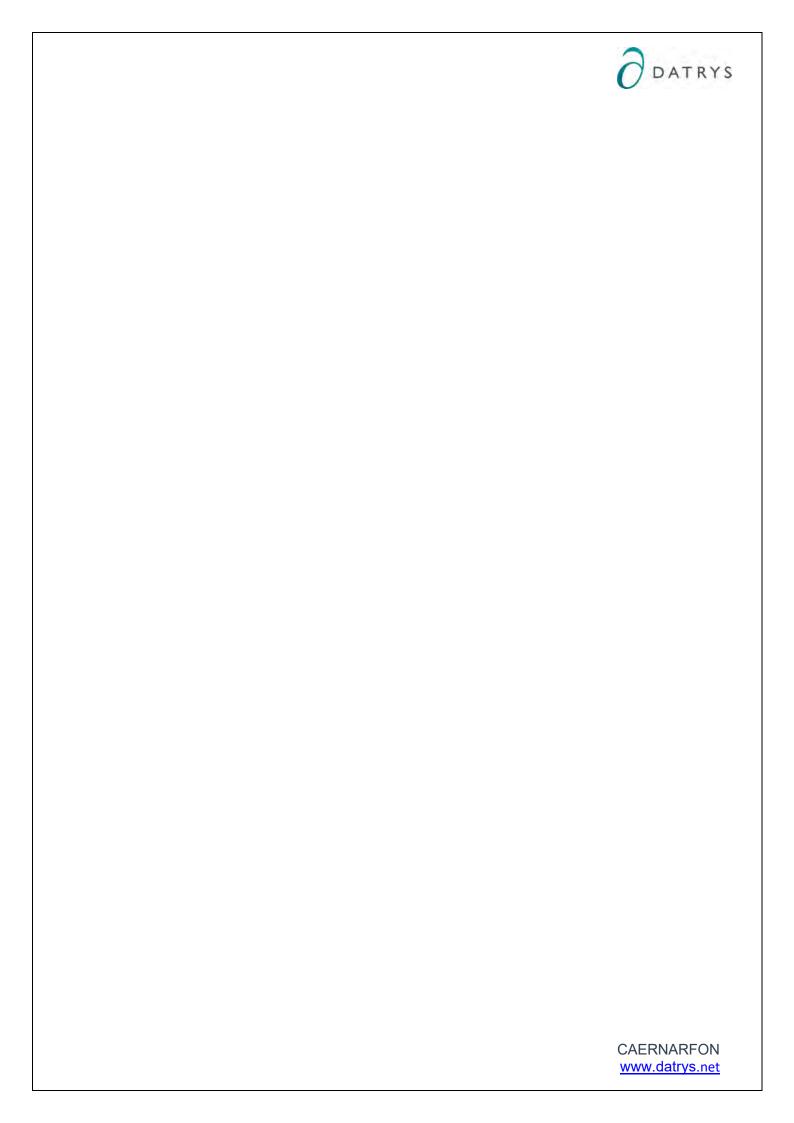
Tel 01286 671027

23007 Project:

Test Date:

Title:

Bontnewydd Porosity Pit 3, Test 4 02.02.23 Ref:


Depth (m) Trial Pit Dimensions: Length (m) 0.3 Width (m)

Time	Depth to water	Rate of change	Actual Water Depth
(mins)	(m)	(m/min)	(m)
0	0.700		0.300
10	0.780	0.00800	0.220
25	0.865	0.00567	0.135
30	0.885	0.00400	0.115
35	0.930	0.00900	0.070
39	0.950	0.00500	0.050

Max effective storage	depth	0.30 n	n
Volume Outflow, Vp75	-25	0.01 n	n3
Surface Area, ap50		0.27 n	n2
Time Taken, tp75-25		24 n	nin
Soil Infiltration Rate,	f	3.49E-05 n	n/s
75% depth (m)	0.23	Calc 75% time (min)	11

75% depth (m)	0.23	Calc 75% time (min)	11
25% depth (m)	0.08	Calc 25% time (min)	35

|--|

Kingscrown Land & Commercial Ltd

Bontnewydd Residential Development

Flood Consequence Assessment ECL.9516.R05.001 Rev -

March 2023

Appendix 5

MicroDrainage Surface Water Calculations

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:30	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{1-2.SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 91 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5	min S	Summer	99.558	0.268	0.0	0.3	0.3	2.0	ОК
			99.649		0.0	0.4	0.4	2.7	O K
60	min S	Summer	99.727	0.437	0.0	0.4	0.4	3.3	Flood Risk
120	min S	Summer	99.776	0.486	0.0	0.4	0.4	3.7	Flood Risk
180	min S	Summer	99.788	0.498	0.0	0.4	0.4	3.8	Flood Risk
240	min S	Summer	99.783	0.493	0.0	0.4	0.4	3.7	Flood Risk
360	min S	Summer	99.759	0.469	0.0	0.4	0.4	3.5	Flood Risk
480	min S	Summer	99.731	0.441	0.0	0.4	0.4	3.3	Flood Risk
600	min S	Summer	99.705	0.415	0.0	0.4	0.4	3.1	Flood Risk
720	min S	Summer	99.679	0.389	0.0	0.4	0.4	2.9	O K
960	min S	Summer	99.633	0.343	0.0	0.4	0.4	2.6	O K
1440	min S	Summer	99.560	0.270	0.0	0.3	0.3	2.0	O K
2160	min S	Summer	99.485	0.195	0.0	0.3	0.3	1.5	O K
2880	min S	Summer	99.435	0.145	0.0	0.3	0.3	1.1	O K
4320	min S	Summer	99.374	0.084	0.0	0.2	0.2	0.6	O K
5760	min S	Summer	99.341	0.051	0.0	0.2	0.2	0.4	O K
7200	min S	Summer	99.321	0.031	0.0	0.2	0.2	0.2	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	105.613	0.0	2.2	18
30	min	Summer	73.497	0.0	3.2	32
60	min	Summer	49.020	0.0	4.3	60
120	min	Summer	31.620	0.0	5.5	90
180	min	Summer	24.081	0.0	6.4	126
240	min	Summer	19.682	0.0	6.9	160
360	min	Summer	14.719	0.0	7.8	228
480	min	Summer	11.975	0.0	8.5	296
600	min	Summer	10.193	0.0	9.0	362
720	min	Summer	8.930	0.0	9.5	428
960	min	Summer	7.238	0.0	10.2	558
1440	min	Summer	5.370	0.0	11.4	806
2160	min	Summer	3.972	0.0	12.6	1168
2880	min	Summer	3.201	0.0	13.5	1528
4320	min	Summer	2.356	0.0	14.9	2248
5760	min	Summer	1.897	0.0	16.0	2944
7200	min	Summer	1.604	0.0	16.8	3672

Egniol Environmental		Page 2
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:30	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

	Stor	n	Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
			99.308		0.0	0.1	0.1	0.1	O K
10080	min	Summer	99.298	0.008	0.0	0.1	0.1	0.1	O K
15	min	Winter	99.595	0.305	0.0	0.3	0.3	2.3	O K
30	min	Winter	99.699	0.409	0.0	0.4	0.4	3.1	O K
60	min	Winter	99.791	0.501	0.0	0.4	0.4	3.8	Flood Risk
120	min	Winter	99.846	0.556	0.0	0.5	0.5	4.2	Flood Risk
180	min	Winter	99.855	0.565	0.0	0.5	0.5	4.3	Flood Risk
240	min	Winter	99.843	0.553	0.0	0.5	0.5	4.2	Flood Risk
360	min	Winter	99.802	0.512	0.0	0.4	0.4	3.9	Flood Risk
480	min	Winter	99.759	0.469	0.0	0.4	0.4	3.5	Flood Risk
600	min	Winter	99.717	0.427	0.0	0.4	0.4	3.2	Flood Risk
720	min	Winter	99.679	0.389	0.0	0.4	0.4	2.9	O K
960	min	Winter	99.614	0.324	0.0	0.4	0.4	2.4	ОК
1440	min	Winter	99.519	0.229	0.0	0.3	0.3	1.7	ОК
2160	min	Winter	99.433	0.143	0.0	0.3	0.3	1.1	O K
2880	min	Winter	99.382	0.092	0.0	0.2	0.2	0.7	O K
4320	min	Winter	99.331	0.041	0.0	0.2	0.2	0.3	ОК
5760	min	Winter	99.306	0.016	0.0	0.1	0.1	0.1	O K
			99.293		0.0	0.1	0.1	0.0	ОК
			99.290		0.0	0.1	0.1	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	1.399	0.0	17.6	4408
10080	min	Summer	1.247	0.0	18.2	5136
15	min	Winter	105.613	0.0	2.5	17
30	min	Winter	73.497	0.0	3.6	31
60	min	Winter	49.020	0.0	4.8	58
120	min	Winter	31.620	0.0	6.2	96
180	min	Winter	24.081	0.0	7.1	134
240	min	Winter	19.682	0.0	7.8	172
360	min	Winter	14.719	0.0	8.8	246
480	min	Winter	11.975	0.0	9.5	318
600	min	Winter	10.193	0.0	10.1	386
720	min	Winter	8.930	0.0	10.6	454
960	min	Winter	7.238	0.0	11.5	584
1440	min	Winter	5.370	0.0	12.8	836
2160	min	Winter	3.972	0.0	14.2	1192
2880	min	Winter	3.201	0.0	15.2	1556
4320	min	Winter	2.356	0.0	16.7	2248
5760	min	Winter	1.897	0.0	17.9	2944
7200	min	Winter	1.604	0.0	18.9	3672
8640	min	Winter	1.399	0.0	19.7	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:30	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	niairiade
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{1-2.SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080 min Winter	99.290	0.000	0.0	0.1	0.1	0.0	ОК

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) $(m^3) \qquad (m^3)$

10080 min Winter 1.247 0.0 20.5 0

Egniol Environmental		Page 4
6 Cannon Harnet Court		2
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:30	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 1-2.SRCX

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.012

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.012

Egniol Environmental		Page 5
6 Cannon Harnet Court		2
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:30	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.4
Membrane Percolation (mm/hr)	1000	Length (m)	10.5
Max Percolation $(1/s)$	7.0	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.017 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{3-4.SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 76 minutes.

	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	99.529	0.239	0.0	0.3	0.3	1.7	O K
30	min	Summer	99.609	0.319	0.0	0.4	0.4	2.2	O K
60	min	Summer	99.672	0.382	0.0	0.4	0.4	2.6	O K
120	min	Summer	99.713	0.423	0.0	0.4	0.4	2.9	Flood Risk
180	min	Summer	99.718	0.428	0.0	0.4	0.4	3.0	Flood Risk
240	min	Summer	99.710	0.420	0.0	0.4	0.4	2.9	Flood Risk
360	min	Summer	99.683	0.393	0.0	0.4	0.4	2.7	O K
480	min	Summer	99.655	0.365	0.0	0.4	0.4	2.5	O K
600	min	Summer	99.629	0.339	0.0	0.4	0.4	2.3	O K
720	min	Summer	99.605	0.315	0.0	0.4	0.4	2.2	O K
960	min	Summer	99.563	0.273	0.0	0.3	0.3	1.9	O K
1440	min	Summer	99.497	0.207	0.0	0.3	0.3	1.4	O K
2160	min	Summer	99.433	0.143	0.0	0.3	0.3	1.0	O K
2880	min	Summer	99.391	0.101	0.0	0.2	0.2	0.7	O K
4320	min	Summer	99.343	0.053	0.0	0.2	0.2	0.4	O K
5760	min	Summer	99.318	0.028	0.0	0.1	0.1	0.2	O K
7200	min	Summer	99.303	0.013	0.0	0.1	0.1	0.1	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	105.613	0.0	1.9	17
30	min	Summer	73.497	0.0	2.6	31
60	min	Summer	49.020	0.0	3.6	56
120	min	Summer	31.620	0.0	4.6	88
180	min	Summer	24.081	0.0	5.3	122
240	min	Summer	19.682	0.0	5.8	158
360	min	Summer	14.719	0.0	6.5	226
480	min	Summer	11.975	0.0	7.0	292
600	min	Summer	10.193	0.0	7.5	358
720	min	Summer	8.930	0.0	7.9	422
960	min	Summer	7.238	0.0	8.5	548
1440	min	Summer	5.370	0.0	9.5	794
2160	min	Summer	3.972	0.0	10.5	1148
2880	min	Summer	3.201	0.0	11.3	1504
4320	min	Summer	2.356	0.0	12.4	2208
5760	min	Summer	1.897	0.0	13.3	2944
7200	min	Summer	1.604	0.0	14.0	3672

Egniol Environmental		Page 2
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

$\frac{\text{Cascade Summary of Results for 9516 - Preliminary Permeable Paving Sizing}}{\underline{3\text{-4.SRCX}}}$

	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
9640	min	Cummor	99.294	0 004	0.0	0.1	0.1	0.0	ОК
			99.290		0.0	0.1	0.1	0.0	0 K
			99.563		0.0	0.1	0.3	1.9	0 K
			99.655		0.0	0.3	0.4	2.5	0 K
			99.730		0.0	0.4	0.4		Flood Risk
			99.730		0.0	0.4			Flood Risk
			99.773		0.0	0.4	0.4		Flood Risk
			99.758		0.0	0.4	0.4		Flood Risk
			99.713		0.0	0.4	0.4		Flood Risk
			99.670		0.0	0.4	0.4	2.6	0 K
			99.630		0.0	0.4	0.4	2.4	O K
			99.595		0.0	0.4	0.4	2.1	O K
			99.537		0.0	0.3	0.3	1.7	O K
1440	min	Winter	99.456	0.166	0.0	0.3	0.3	1.1	O K
2160	min	Winter	99.386	0.096	0.0	0.2	0.2	0.7	O K
2880	min	Winter	99.348	0.058	0.0	0.2	0.2	0.4	O K
4320	min	Winter	99.309	0.019	0.0	0.1	0.1	0.1	O K
5760	min	Winter	99.292	0.002	0.0	0.1	0.1	0.0	O K
7200	min	Winter	99.290	0.000	0.0	0.1	0.1	0.0	O K
8640	min	Winter	99.290	0.000	0.0	0.1	0.1	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	14.6	4400
10080	min	Summer	1.247	0.0	15.1	0
15	min	Winter	105.613	0.0	2.1	17
30	min	Winter	73.497	0.0	3.0	31
60	min	Winter	49.020	0.0	4.0	58
120	min	Winter	31.620	0.0	5.2	94
180	min	Winter	24.081	0.0	5.9	132
240	min	Winter	19.682	0.0	6.5	170
360	min	Winter	14.719	0.0	7.3	242
480	min	Winter	11.975	0.0	7.9	312
600	min	Winter	10.193	0.0	8.4	380
720	min	Winter	8.930	0.0	8.9	444
960	min	Winter	7.238	0.0	9.6	570
1440	min	Winter	5.370	0.0	10.6	820
2160	min	Winter	3.972	0.0	11.8	1172
2880	min	Winter	3.201	0.0	12.7	1528
4320	min	Winter	2.356	0.0	13.9	2244
5760	min	Winter	1.897	0.0	14.9	2936
7200	min	Winter	1.604	0.0	15.7	0
8640	min	Winter	1.399	0.0	16.4	0

Egniol Environmental				
6 Cannon Harnet Court				
Wolverton				
Milton Keynes, MK12 5NF		Mirro		
Date 14/03/2023 12:31	Designed by paul.nye	Designado		
File 9516-Site Cascade File	Checked by	Drainage		
Innovyze	Source Control 2020.1.3			

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{3-4.SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	

10080 min Winter 99.290 0.000 0.0 0.1 0.1 0.0 O K

Storm Rain Flooded Discharge Time-Peak Volume (mm/hr) Volume (m³) (m³)

10080 min Winter 1.247 0.0 17.0 0

Egniol Environmental		Page 4
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Rainfall Details for 9516-Preliminary Permeable Paving Sizing}}{\texttt{3-4.SRCX}}$

 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return Period (years)
 100
 Cv (Summer)
 0.750

 Region England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.010

Time (mins) Area From: To: (ha) 0.010

Egniol Environmental		Page 5
6 Cannon Harnet Court		2
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Model Details for 9516-Preliminary Permeable Paving Sizing}}{\texttt{3-4.SRCX}}$

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	4.8
Max Percolation $(1/s)$	6.4	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.017 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{5-6.SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 81 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	${\tt Infiltration}$	Control	Σ Outflo	w Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	lummer	99.557	0 267	0.0	0.3	0.	3 1.8	O K
			99.645		0.0	0.3	0.		0 K
			99.718		0.0	0.4	0.		
									Flood Risk
120	min S	ummer	99.764	0.474	0.0	0.4	0.	4 3.3	Flood Risk
180	min S	Summer	99.773	0.483	0.0	0.4	0.	4 3.3	Flood Risk
240	min S	Summer	99.765	0.475	0.0	0.4	0.	4 3.3	Flood Risk
360	min S	Summer	99.737	0.447	0.0	0.4	0.	4 3.1	Flood Risk
480	min S	ummer	99.708	0.418	0.0	0.4	0.	4 2.9	Flood Risk
600	min S	ummer	99.680	0.390	0.0	0.4	0.	4 2.7	O K
720	min S	Summer	99.653	0.363	0.0	0.4	0.	4 2.5	O K
960	min S	Summer	99.607	0.317	0.0	0.4	0.	4 2.2	O K
1440	min S	ummer	99.535	0.245	0.0	0.3	0.	3 1.7	O K
2160	min S	ummer	99.462	0.172	0.0	0.3	0.	3 1.2	O K
2880	min S	ummer	99.414	0.124	0.0	0.2	0.	2 0.9	O K
4320	min S	ummer	99.359	0.069	0.0	0.2	0.	2 0.5	O K
5760	min S	ummer	99.330	0.040	0.0	0.2	0.	2 0.3	O K
7200	min S	ummer	99.312	0.022	0.0	0.1	0.	1 0.2	ОК

	Sto	cm	Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	105.613	0.0	2.1	17
30	min	Summer	73.497	0.0	2.9	31
60	min	Summer	49.020	0.0	3.9	56
120	min	Summer	31.620	0.0	5.1	88
180	min	Summer	24.081	0.0	5.8	124
240	min	Summer	19.682	0.0	6.4	158
360	min	Summer	14.719	0.0	7.1	226
480	min	Summer	11.975	0.0	7.8	294
600	min	Summer	10.193	0.0	8.3	360
720	min	Summer	8.930	0.0	8.7	424
960	min	Summer	7.238	0.0	9.4	550
1440	min	Summer	5.370	0.0	10.4	794
2160	min	Summer	3.972	0.0	11.6	1164
2880	min	Summer	3.201	0.0	12.4	1524
4320	min	Summer	2.356	0.0	13.7	2244
5760	min	Summer	1.897	0.0	14.6	2944
7200	min	Summer	1.604	0.0	15.4	3672

Egniol Environmental		Page 2
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\underline{\texttt{5-6.SRCX}}}$

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
			99.300		0.0	0.1	0.1	0.1	O K
10080	min	Summer	99.292	0.002	0.0	0.1	0.1	0.0	O K
15	min	Winter	99.593	0.303	0.0	0.3	0.3	2.1	O K
30	min	Winter	99.695	0.405	0.0	0.4	0.4	2.8	O K
60	min	Winter	99.782	0.492	0.0	0.4	0.4	3.4	Flood Risk
120	min	Winter	99.831	0.541	0.0	0.5	0.5	3.7	Flood Risk
180	min	Winter	99.836	0.546	0.0	0.5	0.5	3.8	Flood Risk
240	min	Winter	99.820	0.530	0.0	0.5	0.5	3.7	Flood Risk
360	min	Winter	99.774	0.484	0.0	0.4	0.4	3.3	Flood Risk
480	min	Winter	99.728	0.438	0.0	0.4	0.4	3.0	Flood Risk
600	min	Winter	99.685	0.395	0.0	0.4	0.4	2.7	O K
720	min	Winter	99.647	0.357	0.0	0.4	0.4	2.5	O K
960	min	Winter	99.582	0.292	0.0	0.3	0.3	2.0	O K
1440	min	Winter	99.491	0.201	0.0	0.3	0.3	1.4	O K
2160	min	Winter	99.410	0.120	0.0	0.2	0.2	0.8	O K
2880	min	Winter	99.365	0.075	0.0	0.2	0.2	0.5	O K
4320	min	Winter	99.320	0.030	0.0	0.1	0.1	0.2	ОК
5760	min	Winter	99.299	0.009	0.0	0.1	0.1	0.1	ОК
			99.290		0.0	0.1	0.1	0.0	0 K
8640	min	Winter	99.290	0.000	0.0	0.1	0.1	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	16.1	4408
10080	min	Summer	1.247	0.0	16.7	5136
15	min	Winter	105.613	0.0	2.3	17
30	min	Winter	73.497	0.0	3.3	31
60	min	Winter	49.020	0.0	4.4	58
120	min	Winter	31.620	0.0	5.7	94
180	min	Winter	24.081	0.0	6.5	132
240	min	Winter	19.682	0.0	7.1	170
360	min	Winter	14.719	0.0	8.0	244
480	min	Winter	11.975	0.0	8.7	314
600	min	Winter	10.193	0.0	9.3	380
720	min	Winter	8.930	0.0	9.8	448
960	min	Winter	7.238	0.0	10.5	578
1440	min	Winter	5.370	0.0	11.7	822
2160	min	Winter	3.972	0.0	13.0	1188
2880	min	Winter	3.201	0.0	13.9	1528
4320	min	Winter	2.356	0.0	15.3	2248
5760	min	Winter	1.897	0.0	16.4	2936
7200	min	Winter	1.604	0.0	17.3	0
8640	min	Winter	1.399	0.0	18.1	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilade
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{5-6.SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level (m)	-	Infiltration (1/s)			Volume (m³)	
10080 min Winter	99.290	0.000	0.0	0.1	0.1	0.0	O K

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³)

10080 min Winter 1.247 0.0 18.8 0

Egniol Environmental		Page 4
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 5-6.SRCX

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.011

Time (mins) Area From: To: (ha)

0 4 0.011

Egniol Environmental		Page 5
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:31	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for 9516 - Preliminary Permeable Paving Sizing 5-6.SRCX

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	4.8
Max Percolation $(1/s)$	6.4	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.017 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:32	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{7-\texttt{8.SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 84 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	t	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min 9	Summer	99.584	0 294	0.0	0.3	0.3	2.0	O K
			99.682		0.0	0.4	0.4	2.7	O K
60			99.763		0.0	0.4	0.4		Flood Risk
120			99.816		0.0	0.5	0.5		Flood Risk
180	min S	Summer	99.827	0.537	0.0	0.5	0.5	3.7	Flood Risk
240	min S	Summer	99.821	0.531	0.0	0.5	0.5	3.7	Flood Risk
360	min S	Summer	99.793	0.503	0.0	0.4	0.4	3.5	Flood Risk
480	min S	Summer	99.762	0.472	0.0	0.4	0.4	3.3	Flood Risk
600	min S	Summer	99.732	0.442	0.0	0.4	0.4	3.1	Flood Risk
720	min S	Summer	99.703	0.413	0.0	0.4	0.4	2.9	Flood Risk
960	min S	Summer	99.653	0.363	0.0	0.4	0.4	2.5	O K
1440	min S	Summer	99.574	0.284	0.0	0.3	0.3	2.0	O K
2160	min S	Summer	99.493	0.203	0.0	0.3	0.3	1.4	O K
2880	min S	Summer	99.440	0.150	0.0	0.3	0.3	1.0	O K
4320	min S	Summer	99.376	0.086	0.0	0.2	0.2	0.6	O K
5760	min S	Summer	99.342	0.052	0.0	0.2	0.2	0.4	O K
7200	min S	Summer	99.322	0.032	0.0	0.2	0.2	0.2	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	105.613	0.0	2.3	17
30	min	Summer	73.497	0.0	3.2	31
60	min	Summer	49.020	0.0	4.3	58
120	min	Summer	31.620	0.0	5.6	90
180	min	Summer	24.081	0.0	6.4	124
240	min	Summer	19.682	0.0	7.0	158
360	min	Summer	14.719	0.0	7.8	228
480	min	Summer	11.975	0.0	8.5	294
600	min	Summer	10.193	0.0	9.0	362
720	min	Summer	8.930	0.0	9.5	426
960	min	Summer	7.238	0.0	10.3	552
1440	min	Summer	5.370	0.0	11.4	796
2160	min	Summer	3.972	0.0	12.6	1164
2880	min	Summer	3.201	0.0	13.6	1528
4320	min	Summer	2.356	0.0	14.9	2244
5760	min	Summer	1.897	0.0	16.0	2944
7200	min	Summer	1.604	0.0	16.9	3672

Egniol Environmental		Page 2
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:32	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for 9516 - Preliminary Permeable Paving Sizing 7-8.SRCX

Storm Event			Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
8640	min	Summer	99.308	0.018	0.0	0.1		0.1	0.1	O K
10080	min	Summer	99.298	0.008	0.0	0.1		0.1	0.1	O K
15	min	Winter	99.624	0.334	0.0	0.4		0.4	2.3	O K
30	min	Winter	99.737	0.447	0.0	0.4		0.4	3.1	Flood Risk
60	min	Winter	99.835	0.545	0.0	0.5		0.5	3.8	Flood Risk
120	min	Winter	99.895	0.605	0.0	0.5		0.5	4.2	Flood Risk
180	min	Winter	99.941	0.651	0.0	0.5		0.5	4.2	Flood Risk
240	min	Winter	99.884	0.594	0.0	0.5		0.5	4.1	Flood Risk
360	min	Winter	99.837	0.547	0.0	0.5		0.5	3.8	Flood Risk
480	min	Winter	99.788	0.498	0.0	0.4		0.4	3.4	Flood Risk
600	min	Winter	99.741	0.451	0.0	0.4		0.4	3.1	Flood Risk
720	min	Winter	99.700	0.410	0.0	0.4		0.4	2.8	O K
960	min	Winter	99.629	0.339	0.0	0.4		0.4	2.3	O K
1440	min	Winter	99.527	0.237	0.0	0.3		0.3	1.6	O K
2160	min	Winter	99.436	0.146	0.0	0.3		0.3	1.0	O K
2880	min	Winter	99.384	0.094	0.0	0.2		0.2	0.7	O K
4320	min	Winter	99.331	0.041	0.0	0.2		0.2	0.3	O K
5760	min	Winter	99.307	0.017	0.0	0.1		0.1	0.1	O K
7200	min	Winter	99.293	0.003	0.0	0.1		0.1	0.0	O K
8640	min	Winter	99.290	0.000	0.0	0.1		0.1	0.0	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	17.6	4408
10080	min	Summer	1.247	0.0	18.2	5136
15	min	Winter	105.613	0.0	2.5	17
30	min	Winter	73.497	0.0	3.6	31
60	min	Winter	49.020	0.0	4.8	58
120	min	Winter	31.620	0.0	6.2	94
180	min	Winter	24.081	0.0	7.1	132
240	min	Winter	19.682	0.0	7.8	172
360	min	Winter	14.719	0.0	8.8	244
480	min	Winter	11.975	0.0	9.5	316
600	min	Winter	10.193	0.0	10.1	384
720	min	Winter	8.930	0.0	10.7	450
960	min	Winter	7.238	0.0	11.5	578
1440	min	Winter	5.370	0.0	12.8	824
2160	min	Winter	3.972	0.0	14.2	1188
2880	min	Winter	3.201	0.0	15.2	1532
4320	min	Winter	2.356	0.0	16.8	2248
5760	min	Winter	1.897	0.0	18.0	2944
7200	min	Winter	1.604	0.0	18.9	3672
8640	min	Winter	1.399	0.0	19.8	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:32	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	niairiade
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{7-\texttt{8.SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	$\Sigma \ \text{Outflow}$	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080 min Winter	99.290	0.000	0.0	0.1	0.1	0.0	ОК

Storm Rain Flooded Discharge Time-Peak Volume (mm/hr) Volume (m³) (m³)

10080 min Winter 1.247 0.0 20.5 0

Egniol Environmental		Page 4
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:32	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drain lage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 7-8.SRCX

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.012

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.012

Egniol Environmental		Page 5
6 Cannon Harnet Court		2
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:32	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainarie
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Model Details for 9516-Preliminary Permeable Paving Sizing}}{7-8.\texttt{SRCX}}$

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	4.8
Max Percolation $(1/s)$	6.4	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.017 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:33	Designed by paul.nye	Designado
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{9-10.\texttt{SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 48 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	99.635	0.345	0.0	0.7	0.7	2.4	O K
30	min S	Summer	99.730	0.440	0.0	0.8	0.8	3.0	Flood Risk
60	min S	Summer	99.797	0.507	0.0	0.9	0.9	3.5	Flood Risk
120	min S	Summer	99.827	0.537	0.0	0.9	0.9	3.7	Flood Risk
180	min S	Summer	99.812	0.522	0.0	0.9	0.9	3.6	Flood Risk
240	min S	Summer	99.784	0.494	0.0	0.9	0.9	3.4	Flood Risk
360	min S	Summer	99.727	0.437	0.0	0.8	0.8	3.0	Flood Risk
480	min S	Summer	99.677	0.387	0.0	0.8	0.8	2.7	O K
600	min S	Summer	99.634	0.344	0.0	0.7	0.7	2.4	O K
720	min S	Summer	99.597	0.307	0.0	0.7	0.7	2.1	O K
960	min S	Summer	99.539	0.249	0.0	0.6	0.6	1.7	O K
1440	min S	Summer	99.459	0.169	0.0	0.5	0.5	1.2	O K
2160	min S	Summer	99.393	0.103	0.0	0.4	0.4	0.7	O K
2880	min S	Summer	99.355	0.065	0.0	0.4	0.4	0.5	O K
4320	min S	Summer	99.317	0.027	0.0	0.3	0.3	0.2	O K
5760	min S	Summer	99.299	0.009	0.0	0.2	0.2	0.1	O K
7200	min S	Summer	99.290	0.000	0.0	0.2	0.2	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	105.613	0.0	2.9	17
30	min	Summer	73.497	0.0	4.0	30
60	min	Summer	49.020	0.0	5.4	46
120	min	Summer	31.620	0.0	7.0	80
180	min	Summer	24.081	0.0	8.0	116
240	min	Summer	19.682	0.0	8.7	148
360	min	Summer	14.719	0.0	9.8	214
480	min	Summer	11.975	0.0	10.6	278
600	min	Summer	10.193	0.0	11.3	340
720	min	Summer	8.930	0.0	11.9	402
960	min	Summer	7.238	0.0	12.9	522
1440	min	Summer	5.370	0.0	14.3	764
2160	min	Summer	3.972	0.0	15.9	1124
2880	min	Summer	3.201	0.0	17.0	1472
4320	min	Summer	2.356	0.0	18.8	2204
5760	min	Summer	1.897	0.0	20.1	2936
7200	min	Summer	1.604	0.0	21.2	0

Egniol Environmental		Page 2
6 Cannon Harnet Court		2
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:33	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	niairiade
Innovyze	Source Control 2020.1.3	

	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
9640	min	Cummor	99.290	0 000	0.0	0.2	0.2	0.0	O K
			99.290		0.0	0.2	0.2	0.0	0 K
			99.683		0.0	0.2	0.8	2.7	0 K
			99.795		0.0	0.9	0.9		Flood Risk
			99.869		0.0	0.9	0.9		Flood Risk
			99.890		0.0	1.0	1.0		Flood Risk
			99.858		0.0		0.9		Flood Risk
						0.9			
			99.812		0.0	0.9	0.9		Flood Risk
			99.725		0.0	0.8	0.8		Flood Risk
			99.654		0.0	0.8	0.8	2.5	0 K
			99.597		0.0	0.7	0.7	2.1	0 K
			99.550		0.0	0.6	0.6	1.8	O K
			99.481		0.0	0.6	0.6	1.3	O K
			99.400		0.0	0.4	0.4	0.8	O K
2160	min	Winter	99.343	0.053	0.0	0.3	0.3	0.4	O K
2880	min	Winter	99.316	0.026	0.0	0.3	0.3	0.2	O K
4320	min	Winter	99.292	0.002	0.0	0.2	0.2	0.0	O K
5760	min	Winter	99.290	0.000	0.0	0.2	0.2	0.0	O K
7200	min	Winter	99.290	0.000	0.0	0.1	0.1	0.0	O K
8640	min	Winter	99.290	0.000	0.0	0.1	0.1	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	22.1	0
10080	min	Summer	1.247	0.0	23.0	0
15	min	Winter	105.613	0.0	3.2	17
30	min	Winter	73.497	0.0	4.5	30
60	min	Winter	49.020	0.0	6.1	48
120	min	Winter	31.620	0.0	7.8	88
180	min	Winter	24.081	0.0	9.0	124
240	min	Winter	19.682	0.0	9.8	160
360	min	Winter	14.719	0.0	11.0	226
480	min	Winter	11.975	0.0	11.9	292
600	min	Winter	10.193	0.0	12.7	354
720	min	Winter	8.930	0.0	13.4	416
960	min	Winter	7.238	0.0	14.4	538
1440	min	Winter	5.370	0.0	16.1	778
2160	min	Winter	3.972	0.0	17.8	1124
2880	min	Winter	3.201	0.0	19.1	1472
4320	min	Winter	2.356	0.0	21.1	2204
5760	min	Winter	1.897	0.0	22.6	0
7200	min	Winter	1.604	0.0	23.8	0
8640	min	Winter	1.399	0.0	24.9	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:33	Designed by paul.nye	Designado
File 9516-Site Cascade File	Checked by	Dialilade
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{9-10.\texttt{SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080 min Winter	99.290	0.000	0.0	0.1	0.1	0.0	ОК

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) $(m^3) \qquad (m^3)$

10080 min Winter 1.247 0.0 25.8 0

Egniol Environmental	Page 4	
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:33	Designed by paul.nye	Designation
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 9-10.SRCX

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.015

Time (mins) Area From: To: (ha) 0 .015

Egniol Environmental		Page 5
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:33	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Model Details for 9516-Preliminary Permeable Paving Sizing}}{9\text{--}10.\texttt{SRCX}}$

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	4.8
Max Percolation (1/s)	6.4	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.024 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\underline{\texttt{11-16.SRCX}}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 87 minutes.

	Stor		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min :	Summer	99.532	0.242	0.0	0.8	0.8	5.0	O K
30	min :	Summer	99.615	0.325	0.0	1.0	1.0	6.7	O K
60	min :	Summer	99.684	0.394	0.0	1.1	1.1	8.2	O K
120	min :	Summer	99.729	0.439	0.0	1.1	1.1	9.1	Flood Risk
180	min :	Summer	99.739	0.449	0.0	1.1	1.1	9.3	Flood Risk
240	min :	Summer	99.734	0.444	0.0	1.1	1.1	9.2	Flood Risk
360	min :	Summer	99.711	0.421	0.0	1.1	1.1	8.7	Flood Risk
480	min :	Summer	99.686	0.396	0.0	1.1	1.1	8.2	O K
600	min :	Summer	99.661	0.371	0.0	1.0	1.0	7.7	O K
720	min :	Summer	99.637	0.347	0.0	1.0	1.0	7.2	O K
960	min :	Summer	99.595	0.305	0.0	0.9	0.9	6.3	O K
1440	min :	Summer	99.529	0.239	0.0	0.8	0.8	5.0	O K
2160	min :	Summer	99.461	0.171	0.0	0.7	0.7	3.6	O K
2880	min :	Summer	99.417	0.127	0.0	0.6	0.6	2.6	O K
4320	min :	Summer	99.364	0.074	0.0	0.5	0.5	1.5	O K
5760	min :	Summer	99.335	0.045	0.0	0.4	0.4	0.9	O K
7200	min :	Summer	99.318	0.028	0.0	0.4	0.4	0.6	O K

	Sto	cm	Rain	Flooded	Discharge	Time-Peak
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
15	min	Summer	105.613	0.0	5.6	18
30	min	Summer	73.497	0.0	7.9	32
60	min	Summer	49.020	0.0	10.7	58
120	min	Summer	31.620	0.0	13.9	90
180	min	Summer	24.081	0.0	15.8	124
240	min	Summer	19.682	0.0	17.3	160
360	min	Summer	14.719	0.0	19.5	228
480	min	Summer	11.975	0.0	21.1	296
600	min	Summer	10.193	0.0	22.5	362
720	min	Summer	8.930	0.0	23.7	426
960	min	Summer	7.238	0.0	25.6	552
1440	min	Summer	5.370	0.0	28.4	796
2160	min	Summer	3.972	0.0	31.5	1168
2880	min	Summer	3.201	0.0	33.8	1528
4320	min	Summer	2.356	0.0	37.2	2244
5760	min	Summer	1.897	0.0	39.8	2944
7200	min	Summer	1.604	0.0	41.9	3672

Egniol Environmental		Page 2
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{11-16.SRCX}}$

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min	Summer	99.306	0.016	0.0	0.3	0.3	0.3	O K
10080	min	Summer	99.298	0.008	0.0	0.3	0.3	0.2	O K
15	min	Winter	99.566	0.276	0.0	0.9	0.9	5.7	O K
30	min	Winter	99.661	0.371	0.0	1.0	1.0	7.7	O K
60	min	Winter	99.743	0.453	0.0	1.1	1.1	9.4	Flood Risk
120	min	Winter	99.791	0.501	0.0	1.2	1.2	10.4	Flood Risk
180	min	Winter	99.798	0.508	0.0	1.2	1.2	10.5	Flood Risk
240	min	Winter	99.787	0.497	0.0	1.2	1.2	10.3	Flood Risk
360	min	Winter	99.748	0.458	0.0	1.1	1.1	9.5	Flood Risk
480	min	Winter	99.708	0.418	0.0	1.1	1.1	8.7	Flood Risk
600	min	Winter	99.669	0.379	0.0	1.0	1.0	7.9	O K
720	min	Winter	99.635	0.345	0.0	1.0	1.0	7.1	O K
960	min	Winter	99.576	0.286	0.0	0.9	0.9	5.9	O K
1440	min	Winter	99.491	0.201	0.0	0.8	0.8	4.2	O K
2160	min	Winter	99.414	0.124	0.0	0.6	0.6	2.6	O K
2880	min	Winter	99.370	0.080	0.0	0.5	0.5	1.7	O K
4320	min	Winter	99.326	0.036	0.0	0.4	0.4	0.7	O K
5760	min	Winter	99.305	0.015	0.0	0.3	0.3	0.3	O K
7200	min	Winter	99.293	0.003	0.0	0.3	0.3	0.1	O K
8640	min	Winter	99.290	0.000	0.0	0.2	0.2	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	43.7	4408
10080	min	Summer	1.247	0.0	45.3	5136
15	min	Winter	105.613	0.0	6.3	17
30	min	Winter	73.497	0.0	8.9	31
60	min	Winter	49.020	0.0	12.0	58
120	min	Winter	31.620	0.0	15.6	96
180	min	Winter	24.081	0.0	17.8	134
240	min	Winter	19.682	0.0	19.5	172
360	min	Winter	14.719	0.0	21.8	246
480	min	Winter	11.975	0.0	23.7	316
600	min	Winter	10.193	0.0	25.2	384
720	min	Winter	8.930	0.0	26.5	450
960	min	Winter	7.238	0.0	28.7	578
1440	min	Winter	5.370	0.0	31.9	824
2160	min	Winter	3.972	0.0	35.4	1188
2880	min	Winter	3.201	0.0	38.0	1532
4320	min	Winter	2.356	0.0	41.8	2248
5760	min	Winter	1.897	0.0	44.7	2944
7200	min	Winter	1.604	0.0	47.1	3672
8640	min	Winter	1.399	0.0	49.2	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drairiage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\underline{\texttt{11-16.SRCX}}}$

Storm	Max	Max	Max	Max	Max	Max	Status	
Event	Level (m)	-	Infiltration (1/s)					
10080 min Winter	99.290	0.000	0.0	0.2	0.2	0.0	O K	

Storm Rain Flooded Discharge Time-Peak Wolume Volume (mins) (m³) (m³)

10080 min Winter 1.247 0.0 51.0 0

Egniol Environmental		Page 4
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 11-16.SRCX

 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return Period (years)
 100
 Cv (Summer)
 0.750

 Region England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.030

Time (mins) Area From: To: (ha) 0.030

Egniol Environmental		Page 5
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

Cascade Model Details for 9516 - Preliminary Permeable Paving Sizing 11-16.SRCX

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	14.4
Max Percolation $(1/s)$	19.2	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.028 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{17\text{--}18.\texttt{SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 40 minutes.

	Storm		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	99.652	0.362	0.0	0.9	0.9	2.5	O K
30	min S	Summer	99.745	0.455	0.0	1.0	1.0	3.1	Flood Risk
60	min S	Summer	99.811	0.521	0.0	1.0	1.0	3.6	Flood Risk
120	min S	Summer	99.832	0.542	0.0	1.1	1.1	3.7	Flood Risk
180	min S	Summer	99.810	0.520	0.0	1.0	1.0	3.6	Flood Risk
240	min S	Summer	99.777	0.487	0.0	1.0	1.0	3.4	Flood Risk
360	min S	Summer	99.713	0.423	0.0	0.9	0.9	2.9	Flood Risk
480	min S	Summer	99.659	0.369	0.0	0.9	0.9	2.5	O K
600	min S	Summer	99.614	0.324	0.0	0.8	0.8	2.2	O K
720	min S	Summer	99.576	0.286	0.0	0.8	0.8	2.0	O K
960	min S	Summer	99.516	0.226	0.0	0.7	0.7	1.6	O K
1440	min S	Summer	99.439	0.149	0.0	0.6	0.6	1.0	O K
2160	min S	Summer	99.376	0.086	0.0	0.5	0.5	0.6	O K
2880	min S	Summer	99.343	0.053	0.0	0.4	0.4	0.4	O K
4320	min S	Summer	99.309	0.019	0.0	0.3	0.3	0.1	O K
5760	min S	Summer	99.294	0.004	0.0	0.2	0.2	0.0	O K
7200	min S	Summer	99.290	0.000	0.0	0.2	0.2	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	105.613	0.0	3.1	16
30	min	Summer	73.497	0.0	4.3	28
60	min	Summer	49.020	0.0	5.8	44
120	min	Summer	31.620	0.0	7.5	80
180	min	Summer	24.081	0.0	8.5	114
240	min	Summer	19.682	0.0	9.3	146
360	min	Summer	14.719	0.0	10.5	212
480	min	Summer	11.975	0.0	11.4	274
600	min	Summer	10.193	0.0	12.1	336
720	min	Summer	8.930	0.0	12.7	398
960	min	Summer	7.238	0.0	13.7	520
1440	min	Summer	5.370	0.0	15.3	754
2160	min	Summer	3.972	0.0	16.9	1108
2880	min	Summer	3.201	0.0	18.2	1472
4320	min	Summer	2.356	0.0	20.0	2204
5760	min	Summer	1.897	0.0	21.5	2912
7200	min	Summer	1.604	0.0	22.6	0

Egniol Environmental		Page 2
6 Cannon Harnet Court		2
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{17\text{--}18.\texttt{SRCX}}$

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
8640	min	Summer	99.290	0.000	0.0	0.2		0.2	0.0	O K
10080	min	Summer	99.290	0.000	0.0	0.2		0.2	0.0	O K
15	min	Winter	99.702	0.412	0.0	0.9		0.9	2.8	Flood Risk
30	min	Winter	99.813	0.523	0.0	1.0		1.0	3.6	Flood Risk
60	min	Winter	99.883	0.593	0.0	1.1		1.1	4.1	Flood Risk
120	min	Winter	99.894	0.604	0.0	1.1		1.1	4.2	Flood Risk
180	min	Winter	99.848	0.558	0.0	1.1		1.1	3.9	Flood Risk
240	min	Winter	99.795	0.505	0.0	1.0		1.0	3.5	Flood Risk
360	min	Winter	99.699	0.409	0.0	0.9		0.9	2.8	O K
480	min	Winter	99.625	0.335	0.0	0.8		0.8	2.3	O K
600	min	Winter	99.567	0.277	0.0	0.8		0.8	1.9	O K
720	min	Winter	99.521	0.231	0.0	0.7		0.7	1.6	O K
960	min	Winter	99.455	0.165	0.0	0.6		0.6	1.1	O K
1440	min	Winter	99.381	0.091	0.0	0.5		0.5	0.6	O K
2160	min	Winter	99.331	0.041	0.0	0.4		0.4	0.3	O K
2880	min	Winter	99.308	0.018	0.0	0.3		0.3	0.1	O K
4320	min	Winter	99.290	0.000	0.0	0.2		0.2	0.0	O K
5760	min	Winter	99.290	0.000	0.0	0.2		0.2	0.0	O K
7200	min	Winter	99.290	0.000	0.0	0.2		0.2	0.0	O K
8640	min	Winter	99.290	0.000	0.0	0.1		0.1	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	23.6	0
10080	min	Summer	1.247	0.0	24.5	0
15	min	Winter	105.613	0.0	3.4	16
30	min	Winter	73.497	0.0	4.8	29
60	min	Winter	49.020	0.0	6.5	48
120	min	Winter	31.620	0.0	8.4	86
180	min	Winter	24.081	0.0	9.6	122
240	min	Winter	19.682	0.0	10.5	156
360	min	Winter	14.719	0.0	11.7	222
480	min	Winter	11.975	0.0	12.7	286
600	min	Winter	10.193	0.0	13.6	348
720	min	Winter	8.930	0.0	14.2	410
960	min	Winter	7.238	0.0	15.4	530
1440	min	Winter	5.370	0.0	17.1	764
2160	min	Winter	3.972	0.0	19.0	1120
2880	min	Winter	3.201	0.0	20.4	1468
4320	min	Winter	2.356	0.0	22.5	0
5760	min	Winter	1.897	0.0	24.1	0
7200	min	Winter	1.604	0.0	25.4	0
8640	min	Winter	1.399	0.0	26.5	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drairiage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{17\text{--}18.\texttt{SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level (m)	-	Infiltration (1/s)			Volume (m³)	
10080 min Winter	99.290	0.000	0.0	0.1	0.1	0.0	ОК

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³)

10080 min Winter 1.247 0.0 27.5 0

Egniol Environmental		Page 4
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 17-18.SRCX

 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return Period (years)
 100
 Cv (Summer)
 0.750

 Region England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.016

Time (mins) Area From: To: (ha) 0.016

Egniol Environmental		Page 5
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:34	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for 9516 - Preliminary Permeable Paving Sizing 17-18.SRCX

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	4.8
Max Percolation $(1/s)$	6.4	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.026 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:35	Designed by paul.nye	Designation
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{19\text{--}22.\texttt{SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 92 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	99.559	0 269	0.0	0.6	0.6	3.7	ОК
			99.650		0.0	0.7	0.7	5.0	O K
60			99.729		0.0	0.8	0.8	6.1	Flood Risk
120	min S	Summer	99.778	0.488	0.0	0.8	0.8	6.8	Flood Risk
180	min S	Summer	99.791	0.501	0.0	0.8	0.8	6.9	Flood Risk
240	min S	Summer	99.787	0.497	0.0	0.8	0.8	6.9	Flood Risk
360	min S	Summer	99.763	0.473	0.0	0.8	0.8	6.5	Flood Risk
480	min S	Summer	99.735	0.445	0.0	0.8	0.8	6.2	Flood Risk
600	min S	Summer	99.708	0.418	0.0	0.7	0.7	5.8	Flood Risk
720	min S	Summer	99.683	0.393	0.0	0.7	0.7	5.4	O K
960	min S	Summer	99.637	0.347	0.0	0.7	0.7	4.8	O K
1440	min S	Summer	99.564	0.274	0.0	0.6	0.6	3.8	O K
2160	min S	Summer	99.488	0.198	0.0	0.5	0.5	2.7	O K
2880	min S	Summer	99.438	0.148	0.0	0.5	0.5	2.0	O K
4320	min S	Summer	99.377	0.087	0.0	0.4	0.4	1.2	O K
5760	min S	Summer	99.344	0.054	0.0	0.3	0.3	0.8	O K
7200	min S	Summer	99.324	0.034	0.0	0.3	0.3	0.5	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		_				
			105.613	0.0	4.1	18
30	min	Summer	73.497	0.0	5.8	32
60	min	Summer	49.020	0.0	7.9	60
120	min	Summer	31.620	0.0	10.2	90
180	min	Summer	24.081	0.0	11.7	126
240	min	Summer	19.682	0.0	12.7	160
360	min	Summer	14.719	0.0	14.3	228
480	min	Summer	11.975	0.0	15.5	296
600	min	Summer	10.193	0.0	16.5	362
720	min	Summer	8.930	0.0	17.4	428
960	min	Summer	7.238	0.0	18.8	558
1440	min	Summer	5.370	0.0	20.9	806
2160	min	Summer	3.972	0.0	23.2	1168
2880	min	Summer	3.201	0.0	24.8	1528
4320	min	Summer	2.356	0.0	27.3	2248
5760	min	Summer	1.897	0.0	29.3	2944
7200	min	Summer	1.604	0.0	30.8	3672

Egniol Environmental		Page 2
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:35	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
0.640			00 211	0 001	0.0	0 0	0 0	0 2	0. 17
			99.311		0.0	0.2	0.2	0.3	0 K
			99.301		0.0	0.2	0.2	0.2	O K
			99.596		0.0	0.6	0.6	4.2	O K
30	min W	Ninter	99.701	0.411	0.0	0.7	0.7	5.7	Flood Risk
60	min W	Ninter	99.794	0.504	0.0	0.8	0.8	7.0	Flood Risk
120	min W	7inter	99.849	0.559	0.0	0.8	0.8	7.7	Flood Risk
180	min W	7inter	99.858	0.568	0.0	0.9	0.9	7.9	Flood Risk
240	min W	7inter	99.847	0.557	0.0	0.8	0.8	7.7	Flood Risk
360	min W	7inter	99.806	0.516	0.0	0.8	0.8	7.1	Flood Risk
480	min W	7inter	99.763	0.473	0.0	0.8	0.8	6.5	Flood Risk
600	min W	7inter	99.721	0.431	0.0	0.7	0.7	6.0	Flood Risk
720	min W	7inter	99.683	0.393	0.0	0.7	0.7	5.4	O K
960	min W	7inter	99.618	0.328	0.0	0.7	0.7	4.5	O K
1440	min W	7inter	99.523	0.233	0.0	0.6	0.6	3.2	O K
2160	min W	7inter	99.436	0.146	0.0	0.5	0.5	2.0	O K
2880	min W	7inter	99.386	0.096	0.0	0.4	0.4	1.3	O K
4320	min W	7inter	99.334	0.044	0.0	0.3	0.3	0.6	O K
5760	min W	7inter	99.310	0.020	0.0	0.2	0.2	0.3	O K
7200	min W	7inter	99.296	0.006	0.0	0.2	0.2	0.1	O K
8640	min W	7inter	99.290	0.000	0.0	0.2	0.2	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	32.2	4408
10080	min	Summer	1.247	0.0	33.3	5136
15	min	Winter	105.613	0.0	4.6	17
30	min	Winter	73.497	0.0	6.5	31
60	min	Winter	49.020	0.0	8.8	58
120	min	Winter	31.620	0.0	11.4	96
180	min	Winter	24.081	0.0	13.1	134
240	min	Winter	19.682	0.0	14.3	172
360	min	Winter	14.719	0.0	16.1	246
480	min	Winter	11.975	0.0	17.4	318
600	min	Winter	10.193	0.0	18.5	386
720	min	Winter	8.930	0.0	19.5	454
960	min	Winter	7.238	0.0	21.1	584
1440	min	Winter	5.370	0.0	23.4	836
2160	min	Winter	3.972	0.0	26.0	1192
2880	min	Winter	3.201	0.0	27.9	1556
4320	min	Winter	2.356	0.0	30.7	2248
5760	min	Winter	1.897	0.0	32.9	2944
7200	min	Winter	1.604	0.0	34.6	3672
8640	min	Winter	1.399	0.0	36.2	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:35	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\underline{\texttt{19-22.SRCX}}}$

Storm	Max	Max	Max	Max	Max	Max	Status	
Event	Level (m)	-	Infiltration (1/s)			Volume (m³)		
10080 min Winter	99.290	0.000	0.0	0.2	0.2	0.0	O K	

Storm		Rain	Flooded	Discharge	Time-Peak	
	Event	(mm/hr)	Volume (m³)	Volume (m³)	(mins)	
	10080 min Winter	1.247	0.0	37.5	0	

Egniol Environmental		Page 4
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:35	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drain lage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 19-22.SRCX

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.022

Time (mins) Area From: To: (ha)

Egniol Environmental		Page 5
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:35	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

Cascade Model Details for 9516 - Preliminary Permeable Paving Sizing 19-22.SRCX

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	9.6
Max Percolation $(1/s)$	12.8	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.023 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		E
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:45	Designed by paul.nye	Designado
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for 9516 - Preliminary Permeable Paving Sizing 23-V2.SRCX

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 121 minutes.

	Storm Event		Max	Max	Max	Max	Max	Max	Status
			Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	ummer	99.340	0.050	0.0	0.1	0.1	0.7	ОК
30	min S	ummer	99.363	0.073	0.0	0.1	0.1	1.0	O K
60	min S	ummer	99.385	0.095	0.0	0.1	0.1	1.3	O K
120	min S	ummer	99.401	0.111	0.0	0.1	0.1	1.5	O K
180	min S	ummer	99.406	0.116	0.0	0.1	0.1	1.6	O K
240	min S	ummer	99.407	0.117	0.0	0.1	0.1	1.6	O K
360	min S	ummer	99.404	0.114	0.0	0.1	0.1	1.6	O K
480	min S	ummer	99.399	0.109	0.0	0.1	0.1	1.5	O K
600	min S	ummer	99.394	0.104	0.0	0.1	0.1	1.4	O K
720	min S	ummer	99.389	0.099	0.0	0.1	0.1	1.4	O K
960	min S	ummer	99.379	0.089	0.0	0.1	0.1	1.2	O K
1440	min S	ummer	99.361	0.071	0.0	0.1	0.1	1.0	O K
2160	min S	ummer	99.341	0.051	0.0	0.1	0.1	0.7	O K
2880	min S	ummer	99.326	0.036	0.0	0.1	0.1	0.5	O K
4320	min S	ummer	99.306	0.016	0.0	0.1	0.1	0.2	O K
5760	min S	ummer	99.295	0.005	0.0	0.1	0.1	0.1	O K
7200	min S	ummer	99.290	0.000	0.0	0.1	0.1	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	105.613	0.0	0.8	18	
30	min	Summer	73.497	0.0	1.1	32	
60	min	Summer	49.020	0.0	1.6	60	
120	min	Summer	31.620	0.0	2.1	104	
180	min	Summer	24.081	0.0	2.5	136	
240	min	Summer	19.682	0.0	2.7	170	
360	min	Summer	14.719	0.0	3.0	238	
480	min	Summer	11.975	0.0	3.3	308	
600	min	Summer	10.193	0.0	3.5	376	
720	min	Summer	8.930	0.0	3.7	442	
960	min	Summer	7.238	0.0	4.0	576	
1440	min	Summer	5.370	0.0	4.5	834	
2160	min	Summer	3.972	0.0	4.9	1192	
2880	min	Summer	3.201	0.0	5.2	1560	
4320	min	Summer	2.356	0.0	5.7	2288	
5760	min	Summer	1.897	0.0	6.0	2952	
7200	min	Summer	1.604	0.0	6.3	0	

Egniol Environmental		Page 2
6 Cannon Harnet Court		2
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:45	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	niairiade
Innovyze	Source Control 2020.1.3	

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
	min Sum				0.0	0.1	0.1	0.0	O K
	min Sum				0.0	0.0	0.0	0.0	O K
15	min Win	nter	99.349	0.059	0.0	0.1	0.1	0.8	O K
30	min Win	nter	99.375	0.085	0.0	0.1	0.1	1.2	O K
60	min Win	nter	99.400	0.110	0.0	0.1	0.1	1.5	O K
120	min Win	nter	99.419	0.129	0.0	0.1	0.1	1.8	O K
180	min Win	nter	99.424	0.134	0.0	0.1	0.1	1.9	O K
240	min Win	nter	99.424	0.134	0.0	0.1	0.1	1.9	O K
360	min Win	nter	99.419	0.129	0.0	0.1	0.1	1.8	O K
480	min Win	nter	99.411	0.121	0.0	0.1	0.1	1.7	O K
600	min Win	nter	99.403	0.113	0.0	0.1	0.1	1.6	O K
720	min Win	nter	99.395	0.105	0.0	0.1	0.1	1.5	O K
960	min Win	nter	99.380	0.090	0.0	0.1	0.1	1.2	O K
1440	min Win	nter	99.355	0.065	0.0	0.1	0.1	0.9	O K
2160	min Win	nter	99.328	0.038	0.0	0.1	0.1	0.5	O K
2880	min Win	nter	99.311	0.021	0.0	0.1	0.1	0.3	O K
4320	min Win	nter	99.292	0.002	0.0	0.1	0.1	0.0	O K
5760	min Win	nter	99.290	0.000	0.0	0.1	0.1	0.0	O K
7200	min Win	nter	99.290	0.000	0.0	0.0	0.0	0.0	O K
8640	min Win	nter	99.290	0.000	0.0	0.0	0.0	0.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
8640	min	Summer	1.399	0.0	6.5	0
10080	min	Summer	1.247	0.0	6.7	0
15	min	Winter	105.613	0.0	0.9	18
30	min	Winter	73.497	0.0	1.3	32
60	min	Winter	49.020	0.0	1.8	60
120	min	Winter	31.620	0.0	2.4	114
180	min	Winter	24.081	0.0	2.8	142
240	min	Winter	19.682	0.0	3.0	182
360	min	Winter	14.719	0.0	3.4	258
480	min	Winter	11.975	0.0	3.7	332
600	min	Winter	10.193	0.0	4.0	404
720	min	Winter	8.930	0.0	4.2	476
960	min	Winter	7.238	0.0	4.5	610
1440	min	Winter	5.370	0.0	5.0	868
2160	min	Winter	3.972	0.0	5.6	1236
2880	min	Winter	3.201	0.0	5.9	1588
4320	min	Winter	2.356	0.0	6.5	2248
5760	min	Winter	1.897	0.0	6.9	0
7200	min	Winter	1.604	0.0	7.2	0
8640	min	Winter	1.399	0.0	7.4	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:45	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilade
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{23\text{-}V2.SRCX}$

Storm Event	Max Level (m)	-	Max Infiltration (1/s)			Max Volume (m³)	Status
10080 min Winter	99.290	0.000	0.0	0.0	0.0	0.0	O K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
10080 min Winter	1.247	0.0	7.6	0

6 Cannon Harnet Court
Wolverton
Milton Keynes, MK12 5NF
Date 14/03/2023 12:45 Designed by paul.nye
File 9516-Site Cascade File Checked by
Innovyze Source Control 2020.1.3

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing 23-V2.SRCX

 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return Period (years)
 100
 Cv (Summer)
 0.750

 Region England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.005

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.005

Egniol Environmental		Page 5
6 Cannon Harnet Court		2
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:45	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainarie
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Model Details for 9516 - Preliminary Permeable Paving Sizing 23-}}{\texttt{V2.SRCX}}$

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	9.6
Max Percolation $(1/s)$	12.8	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.013 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court		E
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:46	Designed by paul.nye	Designado
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{V3-V4.SRCX}}$

Upstream Outflow To Overflow To Structures

(None) 9516 - Preliminary Pond Sizing.SRCX (None)

Half Drain Time : 52 minutes.

	Stor		Max Level	-	Max Infiltration				Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	99.299	0.009	0.0	0.1	0.1	0.1	O K
30	min S	Summer	99.307	0.017	0.0	0.1	0.1	0.2	O K
60	min S	Summer	99.314	0.024	0.0	0.1	0.1	0.3	O K
120	min S	Summer	99.320	0.030	0.0	0.1	0.1	0.4	O K
180	min S	Summer	99.322	0.032	0.0	0.1	0.1	0.4	O K
240	min S	Summer	99.321	0.031	0.0	0.1	0.1	0.4	O K
360	min S	Summer	99.318	0.028	0.0	0.1	0.1	0.4	O K
480	min S	Summer	99.314	0.024	0.0	0.1	0.1	0.3	O K
600	min S	Summer	99.311	0.021	0.0	0.1	0.1	0.3	O K
720	min S	Summer	99.307	0.017	0.0	0.1	0.1	0.2	O K
960	min S	Summer	99.302	0.012	0.0	0.1	0.1	0.2	O K
1440	min S	Summer	99.295	0.005	0.0	0.1	0.1	0.1	O K
2160	min S	Summer	99.290	0.000	0.0	0.1	0.1	0.0	O K
2880	min S	Summer	99.290	0.000	0.0	0.1	0.1	0.0	O K
4320	min S	Summer	99.290	0.000	0.0	0.0	0.0	0.0	O K
5760	min S	Summer	99.290	0.000	0.0	0.0	0.0	0.0	O K
7200	min S	Summer	99.290	0.000	0.0	0.0	0.0	0.0	ОК

	Sto	cm	Rain	Flooded	Discharge	Time-Peak	
	Ever	nt	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	105.613	0.0	0.2	17	
30	min	Summer	73.497	0.0	0.3	31	
60	min	Summer	49.020	0.0	0.5	52	
120	min	Summer	31.620	0.0	0.7	86	
180	min	Summer	24.081	0.0	0.8	120	
240	min	Summer	19.682	0.0	0.9	154	
360	min	Summer	14.719	0.0	1.1	222	
480	min	Summer	11.975	0.0	1.2	286	
600	min	Summer	10.193	0.0	1.2	350	
720	min	Summer	8.930	0.0	1.3	412	
960	min	Summer	7.238	0.0	1.4	532	
1440	min	Summer	5.370	0.0	1.6	766	
2160	min	Summer	3.972	0.0	1.7	0	
2880	min	Summer	3.201	0.0	1.8	0	
4320	min	Summer	2.356	0.0	1.9	0	
5760	min	Summer	1.897	0.0	1.9	0	
7200	min	Summer	1.604	0.0	2.0	0	

Egniol Environmental		Page 2
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:46	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
0.640		00 000	0 000	0.0	0 0	0.0	0 0	0 11
	min Summe			0.0	0.0	0.0	0.0	O K
	min Summe			0.0	0.0	0.0	0.0	O K
	min Winte			0.0	0.1	0.1	0.2	O K
30	min Winte	99.312	0.022	0.0	0.1	0.1	0.3	O K
60	min Winte	99.320	0.030	0.0	0.1	0.1	0.4	O K
120	min Winte	99.325	0.035	0.0	0.1	0.1	0.5	O K
180	min Winte	99.326	0.036	0.0	0.1	0.1	0.5	O K
240	min Winte	99.324	0.034	0.0	0.1	0.1	0.5	O K
360	min Winte	99.319	0.029	0.0	0.1	0.1	0.4	O K
480	min Winte	99.313	0.023	0.0	0.1	0.1	0.3	O K
600	min Winte	99.308	0.018	0.0	0.1	0.1	0.2	O K
720	min Winte	99.303	0.013	0.0	0.1	0.1	0.2	O K
960	min Winte	99.296	0.006	0.0	0.1	0.1	0.1	O K
1440	min Winte	99.290	0.000	0.0	0.1	0.1	0.0	O K
2160	min Winte	99.290	0.000	0.0	0.0	0.0	0.0	O K
2880	min Winte	99.290	0.000	0.0	0.0	0.0	0.0	O K
4320	min Winte	99.290	0.000	0.0	0.0	0.0	0.0	O K
5760	min Winte	99.290	0.000	0.0	0.0	0.0	0.0	O K
7200	min Winte	99.290	0.000	0.0	0.0	0.0	0.0	O K
8640	min Winte	99.290	0.000	0.0	0.0	0.0	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.399	0.0	2.0	0
10080	min	Summer	1.247	0.0	1.9	0
15	min	Winter	105.613	0.0	0.2	17
30	min	Winter	73.497	0.0	0.4	31
60	min	Winter	49.020	0.0	0.6	58
120	min	Winter	31.620	0.0	0.8	92
180	min	Winter	24.081	0.0	1.0	130
240	min	Winter	19.682	0.0	1.1	168
360	min	Winter	14.719	0.0	1.2	238
480	min	Winter	11.975	0.0	1.3	304
600	min	Winter	10.193	0.0	1.4	368
720	min	Winter	8.930	0.0	1.5	432
960	min	Winter	7.238	0.0	1.6	548
1440	min	Winter	5.370	0.0	1.8	0
2160	min	Winter	3.972	0.0	2.0	0
2880	min	Winter	3.201	0.0	2.1	0
4320	min	Winter	2.356	0.0	2.2	0
5760	min	Winter	1.897	0.0	2.3	0
7200	min	Winter	1.604	0.0	2.3	0
8640	min	Winter	1.399	0.0	2.4	0

Egniol Environmental		Page 3
6 Cannon Harnet Court		
Wolverton		
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:46	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Summary of Results for 9516-Preliminary Permeable Paving Sizing}}{\texttt{V3-V4.SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080 min Winter	99.290	0.000	0.0	0.0	0.0	0.0	ОК

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³)

10080 min Winter 1.247 0.0 2.4 0

Egniol Environmental		Page 4
6 Cannon Harnet Court		
Wolverton		-
Milton Keynes, MK12 5NF		Mirro
Date 14/03/2023 12:46	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Rainfall Details for 9516 - Preliminary Permeable Paving Sizing V3-V4.SRCX

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.400
 Shortest Storm (mins)
 15

 Ratio R
 0.288
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.002

Time (mins) Area From: To: (ha)

0 4 0.002

Egniol Environmental		Page 5
6 Cannon Harnet Court		(
Wolverton		
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023 12:46	Designed by paul.nye	Drainage
File 9516-Site Cascade File	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

$\frac{\texttt{Cascade Model Details for 9516 - Preliminary Permeable Paving Sizing V3-}{\texttt{V4.SRCX}}$

Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	9.6
Max Percolation (1/s)	12.8	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.290	Cap Volume Depth (m)	0.600

Orifice Outflow Control

Diameter (m) 0.013 Discharge Coefficient 0.600 Invert Level (m) 99.250

Egniol Environmental		Page 1
6 Cannon Harnet Court	9516	2
Wolverton	Attenuation Basin	-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023	Designed by PNN	Designado
File 9516-Site Cascade File	Checked by	niamade
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for 9516 - Preliminary Pond Sizing.SRCX

Upstream Outflow To Overflow To Structures

0516 B 1: :		- ·	a · ·	1 0	20011	(27	(27
9516 - Prelimina	ry Permeabl	.e Paving	g Sizinq	g 1-2.8	SRCX	(None)	(None)
9516 - Prelimina	ry Permeabl	e Paving	g Sizinq	g 3-4.9	SRCX		
9516 - Prelimina	ry Permeabl	e Paving	g Sizinq	g 5-6.9	SRCX		
9516 - Prelimina	ry Permeabl	e Paving	g Sizinq	g 7-8.5	SRCX		
9516 - Preliminar	y Permeable	Paving	Sizing	9-10.5	SRCX		
9516 - Preliminary	Permeable	Paving S	Sizing 1	11-16.9	SRCX		
9516 - Preliminary	Permeable	Paving S	Sizing 1	17-18.5	SRCX		
9516 - Preliminary	Permeable	Paving S	Sizing 1	19-22.	SRCX		
9516 - Preliminary	Permeable	Paving S	Sizing 2	23-V2.S	SRCX		
9516 - Preliminary	Permeable	Paving S	Sizing V	V3-V4.5	SRCX		

	Sto	cm	Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	99.496	0.596	5.0	11.5	ОК
30	min	Summer	99.597	0.697	5.0	16.8	O K
60	min	Summer	99.690	0.790	5.0	22.8	O K
120	min	Summer	99.773	0.873	5.0	29.0	Flood Risk
180	min	Summer	99.810	0.910	5.0	32.1	Flood Risk
240	min	Summer	99.825	0.925	5.0	33.5	Flood Risk
360	min	Summer	99.815	0.915	5.0	32.6	Flood Risk
480	min	Summer	99.797	0.897	5.0	31.0	Flood Risk
600	min	Summer	99.776	0.876	5.0	29.3	Flood Risk
720	min	Summer	99.754	0.854	5.0	27.5	Flood Risk
960	min	Summer	99.703	0.803	5.0	23.7	Flood Risk
1440	min	Summer	99.567	0.667	5.0	15.1	O K
2160	min	Summer	99.134	0.234	5.0	1.3	O K
2880	min	Summer	98.900	0.000	4.6	0.0	ОК

	Sto	cm	Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Cummon	105.613	0.0	37.7	37
30	mın	Summer	73.497	0.0	53.1	66
60	min	Summer	49.020	0.0	71.3	102
120	min	Summer	31.620	0.0	92.4	152
180	min	Summer	24.081	0.0	105.9	194
240	min	Summer	19.682	0.0	115.3	242
360	min	Summer	14.719	0.0	129.7	330
480	min	Summer	11.975	0.0	140.8	390
600	min	Summer	10.193	0.0	149.7	452
720	min	Summer	8.930	0.0	157.7	514
960	min	Summer	7.238	0.0	170.4	638
1440	min	Summer	5.370	0.0	189.5	896
2160	min	Summer	3.972	0.0	210.1	1152
2880	min	Summer	3.201	0.0	225.5	0

Egniol Environmental		Page 2
6 Cannon Harnet Court	9516	
Wolverton	Attenuation Basin	-
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023	Designed by PNN	Drainage
File 9516-Site Cascade File	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for 9516 - Preliminary Pond Sizing.SRCX

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
4320	min	Summer	98.900	0.000	3.6	0.0	O K
5760	min	Summer	98.900	0.000	3.0	0.0	O K
7200	min	Summer	98.900	0.000	2.6	0.0	O K
8640	min	Summer	98.900	0.000	2.2	0.0	O K
10080	min	Summer	98.900	0.000	2.0	0.0	O K
15	min	Winter	99.538	0.638	5.0	13.5	O K
30	min	Winter	99.646	0.746	5.0	19.8	O K
60	min	Winter	99.747	0.847	5.0	26.9	Flood Risk
120	min	Winter	99.837	0.937	5.0	34.5	Flood Risk
180	min	Winter	99.877	0.977	5.0	38.3	Flood Risk
240	min	Winter	99.895	0.995	5.0	40.0	Flood Risk
360	min	Winter	99.893	0.993	5.0	39.8	Flood Risk
480	min	Winter	99.865	0.965	5.0	37.1	Flood Risk
600	min	Winter	99.834	0.934	5.0	34.2	Flood Risk
720	min	Winter	99.798	0.898	5.0	31.1	Flood Risk
960	min	Winter	99.712	0.812	5.0	24.3	Flood Risk
1440	min	Winter	99.302	0.402	5.0	4.7	O K
2160	min	Winter	98.900	0.000	4.3	0.0	O K
2880	min	Winter	98.900	0.000	3.6	0.0	O K
4320	min	Winter	98.900	0.000	2.7	0.0	O K
5760	min	Winter	98.900	0.000	2.2	0.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
		Summer Summer	2.356 1.897	0.0	248.3 265.8	0
8640	min	Summer Summer	1.604	0.0	280.3	0
15	min	Summer Winter Winter		0.0	303.5 42.3 59.7	0 45 74
		Winter Winter	49.020	0.0	80.2 103.9	110 162
240	min	Winter Winter	19.682	0.0	118.9 129.7	206 246
480	min	Winter Winter Winter	14.719 11.975 10.193	0.0	145.6 157.7 168.0	348 416 476
960	min	Winter Winter	8.930 7.238	0.0	176.7 191.1	544 680
2160	min	Winter Winter Winter	5.370 3.972 3.201	0.0	212.6 235.7 253.0	882 0 0
4320	min	Winter Winter		0.0	278.7 298.5	0

Egniol Environmental		Page 3
6 Cannon Harnet Court	9516	
Wolverton	Attenuation Basin	
Milton Keynes, MK12 5NF		Micco
Date 14/03/2023	Designed by PNN	Designation
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	•

Cascade Summary of Results for 9516 - Preliminary Pond Sizing.SRCX

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
7000		Tal	00 000	0 000	1 0	0 0	0. 77
		Winter			1.9	0.0	0 K
8640	min	Winter	98.900	0.000	1.6	0.0	O K
10080	min	Winter	98.900	0.000	1.5	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m ³)	(m³)		
7200	min	Winter	1.604	0.0	314.8	0	
8640	min	Winter	1.399	0.0	328.8	0	
10080	min	Winter	1.247	0.0	341.1	0	

Egniol Environmental		Page 4
6 Cannon Harnet Court	9516	
Wolverton	Attenuation Basin	
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023	Designed by PNN	Drainage
File 9516-Site Cascade File	Checked by	Diamage
Innovyze	Source Control 2020.1.3	•

Cascade Rainfall Details for 9516 - Preliminary Pond Sizing.SRCX

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 17.400 Shortest Storm (mins) 15
Ratio R 0.288 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.064

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.064

Egniol Environmental		Page 5
6 Cannon Harnet Court	9516	
Wolverton	Attenuation Basin	
Milton Keynes, MK12 5NF		Micro
Date 14/03/2023	Designed by PNN	Drainage
File 9516-Site Cascade File	Checked by	Dialilade
Innovyze	Source Control 2020.1.3	

Cascade Model Details for 9516 - Preliminary Pond Sizing.SRCX

Storage is Online Cover Level (m) 100.000

Tank or Pond Structure

Invert Level (m) 98.900

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0	000		2.0	0	.700		58.8	1	.400		0.0	2	100		0.0
	100		4.7		. 700		71.7		.500		0.0		200		0.0
	200		8.2		900		85.2		.600		0.0	-	300		0.0
0.	300		21.7	1.	.000		99.3	1.	.700		0.0	2.	400		0.0
0.	400		24.1	1.	.100	1	13.9	1.	.800		0.0	2.	500		0.0
0.	500		34.9	1.	200	1	50.0	1.	.900		0.0				
0.	600		46.6	1.	.300		0.0	2.	.000		0.0				

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0101-5000-1300-5000
Design Head (m)	1.300
Design Flow (1/s)	5.0
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	101
Invert Level (m)	98.700
Minimum Outlet Pipe Diameter (mm)	150
Suggested Manhole Diameter (mm)	1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.300	5.0
	Flush-Flo™	0.384	5.0
	Kick-Flo®	0.798	4.0
Mean Flow ove	r Head Range	_	4.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (1,	/s) Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.4 1.200	4.8	3.000	7.4	7.000	11.0
0.200	4.7 1.400	5.2	3.500	7.9	7.500	11.4
0.300	4.9 1.600	5.5	4.000	8.5	8.000	11.8
0.400	5.0 1.800	5.8	4.500	9.0	8.500	12.1
0.500	4.9 2.000	6.1	5.000	9.4	9.000	12.5
0.600	4.8 2.200	6.4	5.500	9.8	9.500	12.8
0.800	4.0 2.400	6.7	6.000	10.3		
1.000	4.4 2.600	6.9	6.500	10.7		

Kingscrown Land & Commercial Ltd

Bontnewydd Bontnewydd Residential Development

Flood Consequence Assessment ECL.9516.R05.001 Rev -

March 2023

Appendix 6

UKSUDs Greenfield Run-off Calculations

Print

Close Report

1 in 1 year (l/s):

1 in 30 years (l/s):

1 in 100 year (l/s):

1 in 200 years (l/s):

1.07

2.17

2.66

3

1.07

2.17

2.66

3

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Paul Ny	====== e				Site Details			
<u> </u>						Latitude:	53.11700° N		
Site name:	9516 - B Resider		ewydd			Longitude:	4.26665° W		
Site location:	Bontne	wydd				_	4.20000 **		
management for dev	velopments ory standar	", SCO ds for S	30219 (2 SuDS (De	013) , th efra, 20	ne SuDS Manual C 115). This informa	2753 (Ciria, 2015) tion on greenfield Date:	3245964668 Mar 14 2023 10:10		
Runoff estimat	ion appr	oach	IH12	4					
Site characteri	stics					Notes			
Total site area (h	a): 0.33	3							
Methodology						(1) Is Q _{BAR} < 2.0 l/s/ha?			
Q _{BAR} estimation method: Calculate from SPR and SAAF					SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates			
SPR estimation m	ethod:	thod: Calculate from SOIL type			SOIL type	are set at 2.0 l/s/ha.			
Soil characteris	stics	Defa			lited				
SOIL type:	2			2		(2) Are flow rates < 5.0 l/s?			
HOST class:	N	I/A		N/A					
SPR/SPRHOST:	0	.3		0.3			are less than 5.0 l/s consent for lly set at 5.0 l/s if blockage from		
		De	Default Edited		vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage				
SAAR (mm):	SAAR (mm): 125		1255	5 1255		elements.			
Hydrological regi	on:		9	9		(2) La CDD (CDDLIOCT : 0.22			
Growth curve fac	tor 1 year	:	0.88		0.88	(3) Is SPR/SPRHOST ≤ 0.3?			
Growth curve factor 30 years:		1.78		1.78	Where groundwater levels are low enough the use of				
Growth curve fac years:	tor 100		2.18		2.18	soakaways to avoid discharge offsite would normal be preferred for disposal of surface water runoff.			
Growth curve fac years:	tor 200		2.46		2.46				
Greenfield rund	off rates		Default		Edited				
Q _{BAR} (I/s):		1.2	22		1.22				

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Kingscrown Land & Commercial Ltd

Bontnewydd Bontnewydd Residential Development

> Flood Consequence Assessment ECL.9516.R05.001 Rev -

> > March 2023

Appendix 7

Surface Water Management Plan

Appendix 7 – Generic Surface Management Plan

<u>Apparatus</u>	Monitoring/ Maintenance	Required Action	Frequency of inspection/action
Road gullies & catchpits	Monitoring	Inspect gullies and catchpits remove silt when sump is	Six monthly, changing to yearly after 18-month period
	Maintenance	full	
Surface water drainage pipes	Monitoring	Inspect surface water drains via manholes or catchpits to ascertain rate of siltation or other related matters	Six monthly, changing to yearly after 18-month period
	Maintenance	remove debris and silt when fouled	
Grilles and non-return valve	Monitoring	Inspect grilles and non- return valves within the eastern ditchcourse to ensure no fouling / blockages	Every 14 days or after a significant rainfall event
	Maintenance	remove debris and silt when fouled	
Site wide	Monitoring	Inspect silt accumulation rates and establish appropriate removal Frequencies	Six Monthly
	Monitoring	Inspection of sediment for possible hazardous materials	Six Monthly
French drains and infiltration	Monitoring	Inspect drainage system and any outfall locations	Inspect six monthly or after significant rainfall event
	Maintenance	Remove debris and silt when fouled and possible sources of contaminants	