

LAND OFF MAES MEURIG, MELIDEN, PRESTATYN, LL19 8LG

FLOOD CONSEQUENCES ASSESSMENT AND DRAINAGE STATEMENT

Final Report v1.0 May 2023

Weetwood Services Ltd info@weetwood.net www.weetwood.net

Report TitleLand Off Maes Meurig, Meliden, Prestatyn, LL19 &LG
Flood Consequences Assessment and Drainage Statement
Final Report v1.0ClientKingscrown Land & Commercial LtdDate of issue25 May 2023

Prepared byFlora Lockey MEnvSci Assistant Flood Risk Consultant
Dan Hodson BEng (Hons) Senior EngineerChecked and approved byJames Aldridge BEng (Hons) MSc MCIWEM Director

This document has been prepared solely as a Flood Consequences Assessment and Drainage Statement for Kingscrown Land & Commercial Ltd. This report is confidential to Kingscrown Land & Commercial Ltd and Weetwood Services Ltd accepts no responsibility or liability for any use that is made of this document other than by Kingscrown Land & Commercial Ltd for the purposes for which it was originally commissioned and prepared.

Contents

Signa	ture Sheet	i
Conte	ents	ii
List o	f Tables, Figures & Appendices	iii
1	Introduction	
11	Purpose of Report	1
1.1	Structure of the Report	1
1.3	Relevant Documents	
2	Site Details and Proposed Development	
2 1	Site Location	2
2.1	Sile Location	
2.2	Existing and Proposed Development	
2.3	Surface waterbodies in the vicinity of the Site	
2.4	Ground Conditions	
3	Planning Policy and Guidance	
3.1	National Planning Policy and Policy Guidance	
3.2	Local Planning Policy	5
3.3	Water Framework Directive	5
3.4	Environmental Permitting and Land Drainage Consent	5
4	Review of Flood Risk	6
4.1	Historical Records of Flooding	6
4.2	Flood Risk from Rivers (Fluvial)	6
4.3	Flood Risk from Surface Water (Pluvial)	
4.4	Flood Risk from Reservoirs, Canals and Other Water Impounding Structures	
4.5	Flood Risk from Groundwater	
4.6	Flood Risk Mitigation	
4.7	Flood Risk Elsewhere	
4.8	Justification Test	
5	Surface Water Management	
51	Surface Water Drainage at the Existing Site	11
5.2	Surface Water Drainage at the Developed Site	
J.2		
6	Foul Water Management	
6.1	Existing Assets	
6.2	New Connections	
6.3	Easements, Diversions and Disconnections	
7	Summary and Recommendations	

List of Tables

Table 1:	Site Infiltration Rate	12
Table 2:	Surface Water Flow Comparison	13
Table 3:	Greenfield Runoff Rate	14
Table 4:	Maintenance Requirements	16

List of Figures

Figure 1:	Site Location and Location of Surface Waterbodies	2
Figure 2:	Digital Terrain Model from LiDAR Data	3
Figure 3:	Development Advice Map	6
Figure 4:	Flood Map for Planning – Rivers and Seas	7
Figure 5:	Drain A Modelled Flood Extents	8
Figure 6:	Flood Risk Assessment Wales Map - Flood Risk from Surface Water and Small Watercourses	9
Figure 7:	Flood Map for Planning - Surface Water and Small Watercourses	
Figure 8:	JBA Groundwater Flood Risk Indicator Map	
Figure 9:	Catchment Delineation	

List of Appendices

- Appendix B: Topographic Survey
- Appendix C: ReFH2 Hyetographs
- Appendix D: Baseline Model Outputs
- Appendix E: Proposed Model Outputs
- Appendix F: Greenfield Runoff Calculations
- Appendix G: Invek Drainage Survey
- Appendix H: Surface Water Attenuation Storage Volume Calculations
- Appendix I: Preliminary Drainage Layout
- Appendix J: Dŵr Cymru Welsh Water Public Sewer Record
- Appendix K: Dŵr Cymru Welsh Water Pre-Planning Enquiry

1 INTRODUCTION

1.1 Purpose of Report

Weetwood Services Ltd ('Weetwood') has been instructed by Kingscrown Land & Commercial Ltd to prepare a Flood Consequences Assessment and Drainage Statement (FCADS) report to accompany a planning application for the proposed development of land off Maes Meurig, Meliden ("the site") for residential use.

The assessment has been undertaken in accordance with the requirements of Technical Advice Note 15 (TAN15) dated July 2004.

1.2 Structure of the Report

The report is structured as follows:

- Section 1 Introduction and report structure
- Section 2 Provides background information relating to the development site
- Section 3 Presents national and local flood risk and drainage planning policy
- Section 4 Assesses the potential risk of flooding to the development site
- **Section 5** Presents an illustrative surface water drainage scheme
- **Section 6** Presents an illustrative foul water drainage scheme
- Section 7 Presents a summary of key findings and the recommendations

1.3 Relevant Documents

The assessment has been informed by the following documents:

- Strategic Flood Consequences Assessment, Denbighshire County Council, January 2018
- Preliminary Flood Risk Assessment, Denbighshire County Council, June 2011
- Denbighshire County Council Local Development Plan 2006 2021, June 2013

2 SITE DETAILS AND PROPOSED DEVELOPMENT

2.1 Site Location

The approximately 0.87 ha site is located north-west of Maes Meurig, Meliden, at Ordnance Survey (OS) National Grid Reference SJ 057 810, as shown in **Figure 1**.

Figure 1: Site Location and Location of Surface Waterbodies

2.2 Existing and Proposed Development

The site is currently undeveloped.

The proposals are for the development of 35 residential dwellings with associated infrastructure and amenity space, with vehicular access provided off Maes Meurig. The proposed site plan is provided in **Appendix A**.

TAN15 classifies residential development as Highly Vulnerable to flood risk.

2.3 Surface Waterbodies in the Vicinity of the Site

The locations of waterbodies in the vicinity of the site are illustrated in **Figure 1**. Drain A is located approximately 25 m north of the site and flows in a north-easterly direction. Drain B flows along the north-western boundary of the site before outfalling into Drain A.

Both Drain A and Drain B are classified as ordinary watercourses.

2.4 Topographic Levels

A topographic survey of the site has been undertaken by Survey Solutions (**Appendix B**) and LiDAR data has been used to develop a digital terrain model of the site and surrounding area as illustrated in **Figure 2**.

Ground levels are shown to fall from 21.43 m AOD in the south-western corner of the site to 11.61 m AOD in the north-western corner, adjacent to Drain B. Ground levels in the residential development area, across the southern portion of the site, are a minimum of 12.38 m AOD.

Ground levels on Maes Meurig adjacent to the site entrance generally range from 17.51 to 20.61 m AOD.

Figure 2: Digital Terrain Model from LiDAR Data

2.5 Ground Conditions

According to the Soilscapes soils dataset produced by the Cranfield Soil and AgriFood Institute¹, soil conditions at the site and within the surrounding area are described as slowly permeable seasonally wet loamy and clayey soils.

British Geological Survey mapping of surface geology² indicates the underlying bedrock formation comprises siltstone and sandstone with subordinate mudstone (Warwickshire Group), overlain by Till.

According to the British Geological Survey and Natural Resources Wales aquifer designation dataset³ the superficial deposits and underlying bedrock at the site are classified as a Secondary A.

The site is not shown to be located within a designated groundwater source protection zone⁴.

¹ www.landis.org.uk/soilscapes/

² https://www.bgs.ac.uk/map-viewers/geoindex-onshore/

³ https://www.bgs.ac.uk/map-viewers/geoindex-onshore/

⁴ https://lle.gov.wales/catalogue/item/SourceProtectionZonesSPZMerged/?lang=en

3 PLANNING POLICY AND GUIDANCE

3.1 National Planning Policy and Policy Guidance

Future Wales - the national Plan 2040 sets out the national development framework for Wales with a strategy for addressing key national priorities through the planning system, including sustaining and developing a vibrant economy, achieving decarbonisation and climate-resilience, developing strong ecosystems and improving the health and well-being of our communities.

Policy 8 - Flooding states that "flood risk management that enables and supports sustainable strategic growth and regeneration in National and Regional Growth Areas will be supported. The Welsh Government will work with Flood Risk Management Authorities and developers to plan and invest in new and improved infrastructure, promoting nature-based solutions as a priority. Opportunities for multiple social, economic and environmental benefits must be maximised when investing in flood risk management infrastructure. It must be ensured that projects do not have adverse impacts on international and national statutory designated sites for nature conservation and the features for which they have been designated".

Planning Policy Wales (PPW) sets out government's planning policies for Wales and how these are expected to be applied. TAN15 provides technical guidance which supplements the policy within PPW and seeks to ensure that flood risk is taken into account at all stages in the planning process and is appropriately addressed.

The general approach of TAN15 is to set out a precautionary framework to guide planning decisions in areas at high risk of flooding. The overarching aim of the framework is, in order of preference, to:

- Direct new development away from those areas which are at a high risk of flooding.
- Where development has to be considered in high risk areas (i.e. zone C) only those developments which can be justified should be located in such areas.

In accordance with paragraph 6 of TAN15, development will only be justified if it can be demonstrated that:

- i. Its location in zone C is necessary to assist, or be part of, a local authority regeneration initiative or a local authority strategy required to sustain an existing settlement; **or**,
- ii. Its location in zone C is necessary to contribute to key employment objectives supported by the local authority, and other key partners, to sustain an existing settlement or region;

and,

- iii. It concurs with the aims of PPW and meets the definition of previously developed land (PPW Figure 2.1); and,
- iv. The potential consequences of a flooding event for the particular type of development have been considered, and in terms of the criteria contained in sections 5 and 7 and appendix 1 found to be acceptable.

National policy requires that planning applications for new development proposals should incorporate sustainable drainage systems (SuDS) to appropriate operational standards and with maintenance arrangements in place unless there is clear evidence that this would be inappropriate.

Statutory standards for sustainable drainage were published by Welsh Government in October 2018⁵ in relation to the design, construction, operation and maintenance of sustainable drainage systems serving new developments of more than one house or where the construction area is equal to or greater than 100 square metres (m²). These standards set out how surface water runoff generated during the present day 1 in 1, 1 in 30 and 1 in 100 annual exceedance probability (AEP) rainfall events and for events exceeding the present day 1 in 100 AEP event should be managed, how peak runoff rates should be restricted and how runoff volumes should be controlled. Approval is subsequently required from the SuDS Approval Body (SAB) before construction can commence.

⁵ Statutory Standards for Sustainable Drainage Systems – designing, constructing, operating and maintaining surface water drainage systems (https://gov.wales/sites/default/files/publications/2019-06/statutory-national-standards-for-sustainable-drainage-systems.pdf)

3.2 Local Planning Policy

The Denbighshire County Council Local Development Plan 2006 – 2021 was adopted by Denbighshire County Council in June 2013. The following policies are relevant in respect of flood risk and drainage:

Policy RD1; Sustainable Development and Good Standard Design

Development proposals will be supported within development boundaries provided that all the following criteria are met:

- Does not unacceptably affect the amenity of local residents, other land and property users or characteristics of the locality by virtue of increased activity, distribution, noise, dust, fumes, litter, drainage, light pollution etc., and provides satisfactory amenity standards itself; and
- Satisfies physical or natural environmental considerations relating to land stability, drainage and liability to flooding, water supply and water abstraction from natural watercourses.

Policy VOE 6; Water Management

All development will be required to eliminate or reduce surface water run-off from the site, where practicable. The run-off rates from the site should maintain or reduce pre-development rates.

3.3 Water Framework Directive

The Water Framework Directive (WFD) provides a legal framework for the protection, improvement and sustainable use of inland surface waters, groundwater, transitional waters, and coastal waters across England, and seeks to:

- Prevent deterioration in the status of aquatic ecosystems, protect them and improve the ecological condition of waters
- Achieve at least 'good' status for all waterbodies by 2015
- Promote the sustainable use of water as a natural resource
- Conserve habitats and species that depend directly on water
- Progressively reduce or phase out the release of individual pollutants or groups of pollutants that present a significant threat to the aquatic environment
- Progressively reduce the pollution of groundwater and prevent or limit the entry of pollutants; and
- Contribute to mitigating the effects of floods and droughts.

The WFD applies to any proposed development which has the potential to impact on a waterbody. Where this is the case, the Natural Resources Wales may require evidence demonstrating that the proposed development does not compromise the aims of the WFD.

3.4 Environmental Permitting and Land Drainage Consent

Under the Environmental Permitting (England and Wales) Regulations 2016 an Environmental Permit for Flood Risk Activities⁶ is required from the Natural Resources Wales for any permanent or temporary works, including works:

- In, over or under a designated main river
- Within 8 m of the top of bank of a designated main river or of the landward toe of a flood defence (16 m if it is a tidal main river or a sea defence).

In addition, any permanent or temporary works within the floodplain of a designated main river may also require an Environmental Permit for Flood Risk Activities. A permit is separate to and in addition to any planning permission granted.

If the location of an activity is on an ordinary watercourse that lies within an Internal Drainage District, land drainage consent may be required from Natural Resources Wales.

Undertaking activities controlled by local byelaws also requires the relevant consent.

⁶ https://naturalresources.wales/permits-and-permissions/environmental-permits/?lang=en

4 REVIEW OF FLOOD RISK

4.1 Historical Records of Flooding

The Flood Map for Planning - Recorded Flood Extents and associated database⁷, and Appendix A of the 2018 Strategic Flood Consequences Assessment ("SFCA Settlement Maps") indicate that there are no records of flooding at or within the immediate vicinity of the site.

4.2 Flood Risk from Rivers (Fluvial)

Figure 1 of TAN15 defines three development advice zones as follows:

- Zone A: Considered to be at little or no risk of fluvial or tidal/coastal flooding
- Zone B: Areas known to have been flooded in the past evidenced by sedimentary deposits
- Zone C: Based on the Natural Resources Wales flood outline, equal to or greater than 0.1% (river, tidal or coastal). Zone C is subdivided into the following two zones:
 - Zone C1: Areas of the floodplain which are developed and served by significant infrastructure, including flood defences
 - o Zone C2: Areas of the floodplain without significant flood defence infrastructure

The development advice zones are shown on the Development Advice Map⁸ and are defined by the predicted extent of the 1 in 1,000 (sea and rivers) AEP event (zone C) and British Geological Survey drift data (zone B). The zones do not take account of the possible impacts of climate change and consequent changes in the future probability of flooding.

The Development Advice Map (**Figure 3**) indicates that the residential development area is primarily located in zone A, with zone B located along its northern edge. The northern portion of the site is located in zone B and zone C2. This is reiterated on Appendix A of the 2018 Strategic Flood Consequences Assessment ("SFCA Settlement Maps").

Figure 3: Development Advice Map Source: Natural Resources Wales website; Accessed: May 2023

⁷ http://lle.gov.wales/catalogue/item/HistoricFl/?lang=en

https://naturalresources.wales/evidence-and-data/maps/long-term-flood-risk/?lang=en

The Flood Map for Planning – Rivers and Seas (**Figure 4**) confirms that the residential development area in the south of the site is located entirely in flood zone 1, with the northern portion of the site located in flood zone 2 and 3.

Figure 4: Flood Map for Planning – Rivers and Seas Source: Natural Resources Wales website; Accessed: May 2023

A 1D-2D Flood Modeller-TUFLOW hydraulic model of Drain A was developed by Wallingford HydroSolutions Limited as part of Rhyl Cut & Prestatyn Gutter Hydraulic Modelling Study (April 2019, updated January 2021). This assesses the risk of flooding from Drain A for the present day 1 in 30, 1 in 100 and 1 in 1,000 annual exceedance probability (AEP) events and the 1 in 100 and 1 in 1,000 AEP events +30% climate change.

The modelled flood extents are shown in **Figure 5** and indicate that the residential development area is located outside the flood extent in up to the 1 in 1,000 AEP event +30% climate change.

As detailed in **Section 2.3**, Drain B flows along the north-western boundary of the site. No modelled channel was included in Rhyl Cut & Prestatyn Gutter Hydraulic Modelling Study for Drain B. However, the Drain B catchment has been included in the flows for Drain A. Therefore, the flood risk from Drain B is considered within the Rhyl Cut & Prestatyn Gutter Hydraulic Modelling Study and is likely driven by the water level in Drain A.

It is concluded that the residential development area is at a very low risk of flooding from rivers (fluvial).

Figure 5: Drain A Modelled Flood Extents Source: Rhyl Cut & Prestatyn Gutter Hydraulic Modelling Study, Wallingford HydroSolutions Limited, April 2019

4.3 Flood Risk from Surface Water (Pluvial)

The Flood Map for Planning - Surface Water and Small Watercourses (**Figure 6**) indicates that the northern portion of the site is located at a very low to high risk of flooding from surface water, with the residential development area located at a very low risk of flooding.

The Flood Risk Assessment Wales Map - Flood Risk from Surface Water and Small Watercourses (Figure 7) accounts for climate change and continues to show that the residential development area is located at a very low risk of flooding from surface water.

It is concluded that the residential development area is at very low risk of flooding from surface water.

(a) Extent

(b) Depth

Figure 6: Flood Risk Assessment Wales Map - Flood Risk from Surface Water and Small Watercourses Source: Natural Resources Wales website; Accessed: May 2023

Figure 7: Flood Map for Planning - Surface Water and Small Watercourses Source: Natural Resources Wales website; Accessed: May 2023

4.4 Flood Risk from Reservoirs, Canals and Other Water Impounding Structures

There are no canals or other impounded waterbodies located within the immediate vicinity of the site. The Flood Map for Planning - Flood Risk from Reservoirs (not shown) indicates that the site is not at risk of flooding from such sources.

It is concluded that the site is not at risk of flooding from reservoirs, canals or other water impounding structures.

4.5 Flood Risk from Groundwater

The JBA Groundwater Flood Risk Indicator map (**Figure 8**) indicates that the site is at a Negligible risk during a 1 in 100 AEP groundwater flood event.

Given the site topography, in the unlikely event that groundwater emergence occurs, flood water is expected to flow in a southerly direction towards Drain A and B and is not expected to pond on site.

It is concluded that the site is at a very low risk of flooding from groundwater.

Figure 8: JBA Groundwater Flood Risk Indicator Map Source: Blue Sky Maps; Accessed: May 2023

4.6 Flood Risk Mitigation

Finished ground and first floor levels should be set a minimum of 0.15 m above adjacent external ground levels following reprofiling of the site, with ground levels sloping down from the dwellings.

This measure will, subject to the implementation of an appropriately designed surface water drainage scheme (**Section 5**), enable any potential overland flows to be conveyed safely across the site without affecting property.

It is noted that the finished ground floor levels of the residential dwellings to the south of the internal site access are significantly below proposed ground levels within the rear gardens of these properties. As such, the external walls below ground level should be tanked and cavity drainage systems installed as appropriate.

4.7 Flood Risk Elsewhere

In accordance with A1.2 of TAN15 developers must ensure there will be no loss of flood flow or flood storage capacity for floods up to the severity of the 1 in 1,000 AEP event. Whilst not specified by TAN15, Natural Resources Wales generally recommends that this should be the case over the lifetime of development (i.e. should take into account climate change) and should consider breach and blockage where necessary.

The site is not at risk of flooding in up to a 1 in 1,000 AEP fluvial event including an allowance for climate change (+30%). As such, the proposals would not be expected to impact flood risk elsewhere and compensatory flood storage is not required.

4.7.1 Additional Rainfall-Runoff Modelling

Denbighshire County Council raised concerns in its pre-planning enquiry response dated 12 October 2022 (ref: 43/2022/0627) relating to a recent planning appeal at an adjacent site. The planning appeal was dismissed because the proposed development had not been shown to prevent increases in flood risk elsewhere as a result of changes in ground levels and land cover affecting surface water runoff / infiltration.

Based upon the above, Weetwood has developed a 2D TUFLOW direct rainfall-runoff model to assess the impact of the proposed development on surface water runoff / infiltration regimes.

The 2D domain topography is based upon filtered LiDAR data, and OS mapping and aerial photography have been used to define the different land uses within the model domain.

Rainfall hyetographs have been derived using the ReFH2 hydrological model for the southern catchment upstream of the site and the site itself. The southern catchment extent is shown in **Figure 9** and the ReFH2 hyetographs are provided in **Appendix C**.

Figure 9: Catchment Delineation

The net rainfall output from ReFH2 has been applied to the southern catchment to take account of the losses associated with soil storage and the urban drainage network.

The total rainfall output from ReFH2 has been applied to the site, and the losses associated with soil storage have been accounted for by applying an average infiltration rate that has been calculated based on the difference between the total and net rainfall (excluding the impact of the urban drainage network).

The average infiltration rate calculated for each storm event are outlined within **Table 1**.

Table 1:	Site Infilt	ration Rate
----------	-------------	-------------

AEP Event	ReFH2 Loss (mm/hr)
Present day 1 in 20	3.53
Present day 1 in 100	5.02
Present day 1 in 1,000	7.20
1 in 100 +40% climate change	6.64

The rainfall-runoff model has been used to assess the 6-hour duration rainfall event for the present day 1 in 20, 1 in 100 and 1 in 1,000 AEP events and the 1 in 100 AEP event +40% climate change.

The modelled outputs for the aforementioned events are provided in **Appendix D**. These indicate that there is no defined flow route through the existing site and that floodwater is not shown to accumulate on site to significant depths.

The rainfall-runoff model has subsequently been updated to demonstrate that the proposed development does not have a negative impact on flood risk downstream of the site.

The proposed scenario model includes the proposed residential dwellings, proposed site levels and the proposed changes in land use. In addition, rainfall has not been applied to the proposed impermeable areas because runoff from these areas will be managed by the proposed surface water drainage system, and similarly, infiltration is no longer permitted through the proposed impermeable areas.

The model has been rerun for the present day 1 in 20, 1 in 100 and 1 in 1,000 AEP event and the 1 in 100 AEP event +40% climate change.

The modelled outputs are provided in **Appendix E**. These indicate that flood depth are shown to be less than 150 mm adjacent to the proposed dwellings to ensure they remain flood free.

4.7.2 Comparison of Flows Leaving the Site

Flows passing through the northern edge of the proposed residential development area have been assessed for the existing and proposed scenarios. The discharge hydrograph from the proposed surface water drainage system have been accounted for separately based on the proposed surface water discharge rate of 2 I/s (refer **Section 5.2.3**).

A comparison of the proposed surface water flows are provided in **Table 2**. These indicate that the proposed development reduces the rate at which surface water leaves the site. This is because the proposed surface water discharge rate from the proposed impermeable areas is less than greenfield runoff rates.

AED Event	Existing (1/s)	Propos	Difference in Flow		
ACPEVEN	Existing (1/s)	Runoff	Site Drainage	(I/s)	
Present day 1 in 20	75	67		-8	
Present day 1 in 100	153	130		-23	
Present day 1 in 1,000	284	247	2	-37	
1 in 100 +20% climate change	200	172		-28	
1 in 100 +40% climate change	247	214		-33	

Table 2: Surface Water Flow Comparison

4.8 Justification Test

The Development Advice Map indicates that the proposed residential development area is primarily located in zone A, with zone B located along its northern edge. The Flood Map for Planning – Rivers and Seas located the development platform entirely in flood zone 1. Therefore, it is concluded that the Justification Test need not be applied in this instance.

5 SURFACE WATER MANAGEMENT

5.1 Surface Water Drainage at the Existing Site

No formal surface water drainage system is present at the site and given the sites topography, surface water runoff would be expected to flow overland in a northerly direction towards Drain B.

The site has a total area of 1.19 ha; however, for the purposes of this assessment the proposed developable area is taken as approximately 0.48 ha. This excludes areas of open space, which are expected to continue to drain as existing.

The greenfield surface water runoff rates for the site, calculated using the HR Wallingford Greenfield runoff tool, are presented in **Table 3**. Details of the input parameters and the output results are provided in **Appendix F**.

AEP of Rainfall Event	Greenfield Runoff Rate (l/s/ha)	Greenfield Runoff Rate for 0.48 ha Site (l/s)
1 in 1	1.6	0.8
QBAR	1.8	0.9
1 in 30	3.3	1.6
1 in 100	4.1	2.0

Table 3: Greenfield Runoff Rate

5.2 Surface Water Drainage at the Developed Site

5.2.1 Disposal of Surface Water (Standard S1)

In accordance with Welsh Government guidance⁹, surface water runoff should be disposed of according to the following hierarchy: Rainwater collected for use; Into the ground (infiltration); To a surface water body; To a surface water sewer or highway drain; To a combined sewer.

As part of the drainage strategy on site, a rainwater harvesting system could be considered to collect nonpotable water for reuse where possible. This could include the installation of water butts at individual dwellings, which would reduce demand on potable water supplies. However, the incorporation of rainwater harvesting systems within the dwelling will require pumped systems. In accordance with the principles of the Statutory Standards for SuDS, the use of pumping should be avoided where possible. Therefore, Priority Level 1 has been discounted as the primary method for disposal of surface water.

As detailed in **Section 2.4**, the site is underlain by soils with impeded drainage. As such, the disposal of surface water via infiltration is unlikely to be feasible; however, infiltration tests have not been undertaken at this stage. Such tests may be undertaken at the detailed design stage in accordance with the guidelines in BRE365¹⁰.

In the event that infiltration is not a practicable method for the disposal of surface water (Priority Level 2), it is subsequently proposed to direct all runoff from the developed site to Drain B in accordance with Priority Level 3. It should be noted that in order to utilise Drain B, a surface water pumping station may be required.

5.2.2 Post Development Impermeable Area

The area of impermeable surfaces within the proposed development has been calculated to be 0.48 ha, based on **Appendix A**.

⁹ Footnote 5

¹⁰ BRE Digest 365 Soakaway Design, Building Research Establishment, 2016

5.2.3 Peak Flow Control (Standard S2)

The runoff rates outlined in **Table 3** are considered to be unachievable because a flow control with a diameter of less than 75 mm may pose a risk of blockage to the drainage system. As such, a discharge rate of 2.2 l/s has been utilised, assuming a gravity connection is utilised.

5.2.4 Volume Control (Standard S2)

Where reasonably practicable, for greenfield sites, the runoff volume from the proposed development to any highway drain, sewer or surface water body in the 1 in 100 AEP, 6 hour rainfall event should not exceed the greenfield runoff volume for the same event.

As outlined within the CIRIA SuDS Manual 2015 extra runoff volumes in extreme events may be managed by releasing all runoff (above the 1 in 1 AEP event) from the site at a maximum rate of 2 l/s/ha or QBAR, whichever is the higher value.

Reducing the proposed surface water discharge rate to less than 2.2 l/s is not considered to be achievable, recognising that proposed discharge rate is dictated by a minimum flow control diameter of 75 mm, assuming a gravity connection is utilised.

5.2.5 Attenuation Storage

It is proposed to attenuate surface water runoff generated by the proposed roofs and hardstanding within an attenuation basin.

The proposed surface water drainage system has been modelled using Causeway Flow (**Appendix H**) and has been sized to store the 1 in 100 AEP rainfall event including a 40% increase in rainfall intensity to allow for climate change in accordance with Welsh Government guidance¹¹.

Assuming a peak discharge rate of 2.2 l/s, a total storage volume of 623 m³ would be required. The storage volume could be accommodated within an attenuation basin with an area of 874 m².

A preliminary surface water drainage layout is provided in **Appendix I**.

5.2.6 Urban Creep

A uniform allowance of 10% additional impermeable area has been made to account for urban creep.

5.2.7 Exceedance Routes

Flows resulting from rainfall in excess of the 1 in 100 AEP rainfall event including an allowance for climate change will be managed in exceedance routes. It is assumed that as the development proposals progress, the design of the site would ensure flood flows are directed towards carriageways, with the site being profiled to ensure that flood flows are directed away from built development.

5.2.8 Water Quality and Pollution Control (Standard S3)

The CIRIA SuDS Manual¹² and Table G3.1 of the Statutory Standards for SuDS identifies individual property driveways, roofs and low traffic roads as having a low pollution hazard level. Table 26.2 of the CIRIA SuDS Manual 2015 indicates that the pollution hazard indices associated with such uses for total suspended solids, hydrocarbons and metals are 0.50, 0.40 and 0.40 respectively.

Table 26.3 of the CIRIA SuDS Manual 2015 indicates that the SuDS mitigation indices for attenuation basins and permeable paving for total suspended solids, hydrocarbons and metals are 0.50, 0.50 and 0.60 and 0.7, 0.6 and 0.7 respectively. As such, the proposed drainage system includes adequate water quality treatment.

¹¹ Flood Consequences Assessments: Climate Change Allowances - https://gov.wales/sites/default/files/publications/2021-09/climate-changeallowances-and-flood-consequence-assessments_0.pdf

¹² Table 26.2

In addition, catchpit manholes and silt traps in gullies/channels drains, will help prevent contaminants discharging into the downstream receptor.

5.2.9 Amenity and Biodiversity (Standard S4 and Standard S5)

The proposed layout includes landscaped areas/trees which will provide aesthetic benefits and interception of rainfall, thus helping with volume control (via evapotranspiration).

Vegetated detection basins can include a variety of diverse planting that will help make a positive contribution to urban biodiversity – providing habitat and food for insects and birds. Some plans and animals specifically require ephemeral water bodies as part of their life cycle, and suitable wildflower mixes can provide important nectar sources for insects.

It is generally recommended that native vegetation is used to maximise the biodiversity value of these areas. However, it may be valuable to include some non-native vegetation to support pollinators, such as butterflies and bees.

The implementation of soft landscaping will also help provide users of the site with health and wellbeing benefits.

5.2.10 Adoption and Maintenance of SuDS (Standard S6)

SuDS elements which serve one property will be the responsibility of the owner of the property.

SuDS elements which serve more than one property will be adopted and maintained by the SAB, in accordance with the Statutory Standards for SuDS.

If a surface water Pumping Station is required it will need to be maintained in accordance with manufacturers recommendations and given that it serves multiples properties will presumably be adopted and maintained by the SAB.

An indicative maintenance schedule is presented in Table 4.

Table 4: Maintenance Requirements

Schedule	Required action	Frequency			
Attenuation Basin	Attenuation Basin				
Regular maintenance	Remove litter and debris	Monthly			
	Cut grass	Monthly during grow season Or as required)			
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required			
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly			
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly			
	Inspect inlets and facility surface for silt accumulation.	Monthly for first year, then			
	Establish appropriate silt removal frequencies	annually or as required			
	Tidy all dead growth before start of growing season	Annually			
	Remove sediment from inlets/outlets	Annually (or as required)			
Occasional	Reseed areas of poor vegetation growth	As required			
maintenance	Prune and trim any trees and remove cuttings	Every two years or as			
	Remove sediments from inlets/outlets and main basin when required	required			
Remedial actions	Repair erosion or other damage by reseeding or re-turfing				
	Realignment of rip-rap	As required			
	Repair/rehabilitation of inlets/outlets	Astequited			
	Relevel uneven surface and reinstate design levels				
Permeable Paving					

Schedule	Required action	Frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site- specific observations of clogging or manufacturer's recommendations.
Occasional	Stabilise and mow contributing and adjacent areas	As required
maintenance	Removal of weeds or management using glyphosphate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
Remedial actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required
Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/or weed growth- if required, take remedial action	Three-monthly, 48h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies accumulation rates and establish appropriate removal frequencies Monitor inspection chambers	Annually

6 FOUL WATER MANAGEMENT

6.1 Existing Assets

An extract of the public sewer records obtained from Dŵr Cymru Welsh Water (DCWW) is provided in **Appendix J** and a drainage survey undertaken by Invek Surveys is provided in **Appendix G**. This indicates that the following wastewater assets are present within the site boundary:

- 225 mm diameter public combined sewer flowing east
- 225 mm / 375 mm diameter public combined sewer flowing north

6.2 New Connections

The anticipated domestic foul loading from the site has been calculated in accordance with Design and Construction Guidance¹³. The expected total peak flow rate from the development is 1.6 l/s.

DCWW has advised, by way of a pre-planning sewerage enquiry response (**Appendix K**), that there is capacity in the local foul sewerage network to receive and treat domestic foul water from the proposed development, and that foul water can discharge without restriction into the 225 mm/ 300 mm diameter combined sewer located at the site.

A preliminary foul water drainage layout is provided in **Appendix I**.

6.3 Easements, Diversions and Disconnections

To ensure that DCWW has adequate access to the existing combined sewers for future repairs and maintenance, DCWW will require a 3 m easement to be provided either side of the centreline of the sewers. It should be noted that it is anticipated that diversion works will be required to facilitate the development as shown on the preliminary foul water drainage layout provided in **Appendix I**.

¹³ Sewerage Sector Guidance Appendix C, Water UK, Approved Version 2.0, March 2020

7 SUMMARY AND RECOMMENDATIONS

This report has been prepared on behalf of Kingscrown Land & Commercial Ltd and relates to the proposed development of the land rear of Maes Meurig, Meliden for residential use.

The Development Advice Map indicates the residential development area is primarily located in zone A, with zone B located along its northern edge. The northern portion of the site is located in zone B and zone C2.

The risk of flooding to the proposed development from all identified sources is assessed to be low.

The proposed development platform is located in zone A and therefore the justification test need not apply.

Based on the assessment of flood risk, finished floor levels should be at least 0.15 m above adjacent ground levels following any reprofiling of the site, with ground levels sloping down from the dwellings, in accordance with best practice.

Any impact on flood risk elsewhere is expected to be minimal.

A 2D TUFLOW direct rainfall-runoff model to assess the impact of the proposed development on surface water runoff / infiltration regimes. A comparison of the proposed surface water flows indicate that the proposed development reduces the rate at which surface water leaves the site

Surface water runoff from the redeveloped site can be sustainably managed in accordance with planning policy. Surface water drainage is proposed to connect to Meliden Mine Drain at a rate of 2.2 l/s in order to utilise a 75mm orifice. The detailed drainage design should be submitted to and approved by the SAB prior to the commencement of development

Foul water is proposed to connect to the existing combined sewer within the site boundary.

In conclusion, this report demonstrates that the proposed development may be completed in accordance with the requirements of planning policy.

APPENDIX A

Proposed Site Plan

+	+	
(4		
A Y Y		
R SET		
SION ZONES		
Cart .	RPA	
		~
	1 1	
- 1)		
	F PLOTS 5-12 REVISED	28/04/23 OR
500	E PLOTS 1-2 AMENDED	25/04/23 OR
	SITE LAYOUT AMENDED	24/04/23 OR
TPO -	SURVEY + AMENITY SPACE	20/04/23 OK
	B ROAD AMENDED TO SUIT	11/04/23 OR
and i	3-11 MOVED FORWARD A METRE TO AVOID TREES RPA	
1 20	A ROAD RE-MODELLED TO SUIT SITE CONTOURS + PLOT LEVELS	05/04/23 OR
AN A	ADJUSTED	
5	REV DESCRIPTION	DATE BY
Sala Sala	ARCHITECTS. CHECK ALL DIMENSIONS ON SIT TO BE NOTIFIED TO ARCHITECT. ELEMENTS O	Y GOMMON E. DISCREPANCIES F STRUCTURE
	SHOWN ARE INDICATIVE AND FOR GUIDANCI BE AS STRUCTURAL ENGINEERS DETAILS AND DO NOT SCALE FROM THIS DRAWING WORK	E. FINAL DESIGN TO SPECIFICATION. TO FIGURED
	DIMENSIONS ONLY.	
		FURIG
Г NO.	MELIDEN	201110,
7. 28. 29. 30. 31.	for KINGSCROWN	
3, 34.	PROPERTIES	
	DRAWING TITLE	
9, 10, 11, 12.	INDICATIVE SITE LA	YOUT
	FROM MAES MEUR	IG OPT 3
5.		
	SCALE DATE DRAV 1 · 500 @A3 21/03/23 OF	NN CHECKED
5, 6.	DRAWING	
	STATUS PRELIMINA	.RY
1 15 16	JOB No DRAWING No C1100 000	REVISION
+, 13, 10.		Г
17-24.		OMMON
	THE OLD POLICE STATION, 15 GLYNNE WAY. HA	WARDEN, CH5 3NS
	Tel: 01244 537 100 wales@agarchitects.co.uk www Ainsley Gommon Architects Ltd. Registered in England	w.agarchitects.co.uk & Wales No.4187948
	Registered Office: 1 Price Street, Hamilton Square, Bir	kenhead CH41 6JN
	PRINTED: 02/05/2023 08:46:55	A3

APPENDIX B

Topographic Survey

305920.000mE		TOPOGRAPHICAL & MEASURED BUILDING SURVEYS ABBREVIATIONS & SYMBOLS AH Arch Head Height ER Earth Rod RSD Roller Shutter Door A/B Air Brick ET EP+Transformer RSJ Rolled Steel Joist
+	381120.000mN	AR Assumed Route FB Flower Bed SI Sign Post AV Air Valve FBD Floor Board Direction SP Arch Spring Point Height BB Belisha Beacon FH Fire Hydrant SV Stop Valve BH Bore Hole FL Floor Level SW Surface Water BL Bed Level FP Flag Pole SY Cable Stay BO Bollard FW Foul Water Tac Tactile Paving BrP Brace Post GG Gully Grate TC Telecom Cover BU Bush HH Head Height THL Threshold Level B/W Barbed Wire Fence IC Inspection Cover TL Traffic Light B/W Barbed Wire Fence I/R Iron Railings TP Telegraph Pole C/B Close Board Fence I/R Iron Railings TP Telegraph Pole C/H Cill Height KO Kerb Outlet TS Traffic Signal Cover C/L Cover Level LP Lamp Post TV
15.98	381100.000mN	DH Door Head Height PO Post VP Vent Pipe DII. Dilapidated P/R Post & Rail Fence WB Waste Bin DP Down Pipe P/W Post & Wire Fence WH Weep Hole DR Drain P/Wall Partition Wall WL Water Level EBx Electric Supply Cover RL Ridge Level WO Wash Out EL Eaves Level RP Reflector Post Sirvey Control Station DRAWING NOTES Image: Sirvey Sirvey Control Station Survey Control Station Topographical Surveys Trees are drawn to scale showing the average canopy spread. Descriptions and heights should be used as a guide only. All building names, descriptions, number of storeys, construction type including roof line details are indicative only and taken externally from ground level. All below ground details including drainage, voids and services have been identified from above ground and therefore all details relating to these features including; sizes, depth, description et cwill be approximate only. All critical dimensions and connections should be checked and verified prior to starting work. Detail, services and features may not have been surveyed if obstructed or not reasonably visible at the time of the survey. Surveyed physical features may not necessarily rep
3.32	381080.000mN	 Ceneral The contractor must check and verify all site and building dimensions, levels, utilities and drainage details and connections prior to commencing work. Any errors or discrepancies must be notified to Survey Solutions immediately. The accuracy of the digital data is the same as the plotting scale implies. All dimensions are in metres unless otherwise stated. The survey control listed is only to be used for topographical surveys at the stated scale. All control must be checked and verified prior to use. © Land Survey Solutions Limited holds the copyright to all the information contained within this document and their written consent must be obtained before copying or using the data other than for the purpose it was originally supplied. Do not scale from this drawing.
+	381060.000mN	
+	381040.000mN	
+	381020.000mN	SURVEY CONTROL CO-ORDINATES STATIONS EASTINGS NORTHINGS LEVEL DESCRIPTION ST01 305895.382 380996.435 25.080 21.331 ST02 305846.84 381015.506 21.331 315 ST03 305866.842 381042.373 19.509 315 ST2A 305845.313 381025.470 20.865 381015 SURVEY GRID AND LEVEL DATUM The coordinate system established for this survey is related to Ordnance Survey (OS) national grid at a single point using Smartnet, then orientated to grid north with a scale factor of 1.000. The level datum established for this survey is related to Ordnance Survey (OS) using GPS Smartnet. To avoid discrepancies any coordinated data used in conjunction with this survey must be derived directly from this control data. Survey must be derived directly from this control data.
+	381000.000mN	REV DESCRIPTION DRAWN APPR DATE
+	380980.000mN	BUILDING SURVEYING UNDERGROUND SURVEYING SITE ENGINEERING MONITORING 0845 040 5969 SURVEY-Solutions.co.uk PROJECT TITLE Sease of the second coventry classeow London Manchester Norwitch NOTTINGHAM YEOVIL PROJECT TITLE Maes Meurig Meliden Prestatyn LL19 8LG DRAWING DETAIL TOPOGRAPHICAL SURVEY Sheet 1 of 1 CLIENT SCALE 1:200 SURVEYOR SURVEY DATE 23/12/2022 SO SURVEY DATE 23/12/2022 DRAWING NUMBER REVISION 44377MCLS-01 ISSUE DATE 04/01/2023
820.000mE		RICS Chartered THE SURVEY ASSOCIATION

Original Sheet Size A0H

APPENDIX C

ReFH2 Hyetographs

APPENDIX D

Baseline Model Outputs

APPENDIX E

Proposed Model Outputs

APPENDIX F

Greenfield Runoff Calculations

Print

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	dan hodson				
Site name:	Maes Meurig				
Site location:	LL19 8LE				

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis Date: fo

Site Details	
Latitude:	53.31804° N
Longitude:	3.41502° W
Reference:	2126726840

Mar 21 2023 16:50

for setting consents for the	drainage of	fsurf	face water r	unoff from site	S.			
Runoff estimation ap	proach	IH12	24					
Site characteristics					Notes			
Total site area (ha): 1					(1) = 0 = - (2) = 1/c/b = 2			
Methodology					(1) 15 QBAR < 2.0 1/5/11a:			
Q _{BAR} estimation method	d: Calcu	late	from SPR	and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates			
SPR estimation method	Calcu	late	from SOIL	type	are set at 2.0 l/s/ha.			
Soil characteristics	Default	t	Edite	d				
SOIL type:	2		2		(2) Are flow rates < 5.0 l/s?			
HOST class:	N/A		N/A					
SPR/SPRHOST:	0.3		0.3		discharge is usually set at 5.0 l/s if blockage from			
Hydrological charact	eristics	Default		Edited	vegetation and other materials is possible. Lower consent flow rates may be set where the blockage			
SAAR (mm):		71	5	715	risk is addressed by using appropriate drainage			
Hydrological region:	[9		9	elements.			
Growth curve factor 1 y	ear:	0.8	88	0.88	(3) Is SPR/SPRHOST ≤ 0.3?			
Growth curve factor 30	years:	1.7	78	1.78				
Growth curve factor 100	J years:	2.18		2.18	soakaways to avoid discharge offsite would normally			
Growth curve factor 20	0 years:	2.46		2.46	be preferred for disposal of surface water runoff.			
· · · · · · · · · · · · · · · · · · ·								

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	1.87	1.87
1 in 1 year (l/s):	1.64	1.64
1 in 30 years (l/s):	3.33	3.33
1 in 100 year (l/s):	4.07	4.07
1 in 200 years (l/s):	4.6	4.6

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

APPENDIX G

Invek Drainage Survey

APPENDIX H

Surface Water Attenuation - Storage Volume Calculation

Weetwood Services Itd File: 20220517 5698 SW/ P2 NC Page 1										
111	Weetv	vood Serv	lices Ltd	FI	File: 20230517 5698 SW P2 NC Page 1					
Weetwood	Park H	ouse		N	Network: Storm Network MAES MEURIG SW					
Development · Plopping · Equipopment	Ffordd	Byrnwr G	Gwair	D	an Hodson		WITH SURCHARGED OUTFALL			
	Mold,	CH7 1FQ		17	7/05/23					
Design Settings										
Rainfall Methodology FEH-13 Minimum Velocity (m/s) 1.00										
Return Period (vears) 2 Connection Type Level Soffits										
	Addit	ional Flov	v (%) 0		Minimum Ba	kdrop Height	(m) 0.200			
			CV 0	750	Preferred	Cover Denth	(m) 1 200			
	Time c	of Entry (n	nins) 5	00	Include Inte	rmediate Gro	und \checkmark			
Maximum Time o	f Concen	itration (n	nins) 30	00	Enforce best pra	ictice design r	ules x			
Maxi	mum Ra	infall (mn	n/hr) 50	0	Emoree best pre					
					<u>inole type</u>					
Max	Width (mm) Di	ameter (mm) 👘	Max Width (mm) Diameter	(mm)			
		, 374		1200	749)	1500			
		499		1350	900)	1800			
						-				
			>9	00 Link+90	00 mm					
M	ax Depth	n (m) Di	ameter (mm) 🛛 🕬	Max Depth (m)	Diameter (m	ım)			
	1	.500	1	1050	99.999	12	200			
			Ci	rcular Link	k Tvpe					
			<u></u>		<u>k i jpc</u>					
		Shape	Circular	Auto	Increment (mm)	75				
		Barrels	1		Follow Ground	х				
			Availa	hla Diama	tors (mm)					
			Availa	100	150					
				Nodes	5					
Name	Area	T of E	Cover	Diamete	r Easting	Northing	Depth			
	(ha)	(mins)	Level	(mm)	(m)	(m)	(m)			
			(m)							
1	0.021	5.00	16.950	1200	305899.268	381091.062	1.500			
2	0.074	5.00	15.800	1200	305883.815	381090.079	1.500			
3	0.044	5.00	15.000	1200	305858.503	381073.934	1.600			
4	0.069	5.00	15.000	1200	305836.744	381059.243	1.800			
5	0.070	5.00	15.000	1200	305826.745	381047.864	2.000			
60	0.117	5.00	15.500	1200	305798.418	381034.486	2.900			
6	0.044	5.00	15.000	1200	305807.619	381041.517	2.500			
7	0.042	5.00	14.000	1200	305798.302	381062.539	1.600			
HW1			12.000		305773.163	381060.373	1.000			
HW2		5.00	12.000		305748.134	381090.245	1.000			
8			12.000	1200	305743.381	381092.084	1.050			
HW3			12.000		305738.672	381096.813	0.400			

Jectuood opment • Planning • Environment			Wee Park Ffor Mol	Weetwood Services Ltd Park House Ffordd Byrnwr Gwair Mold, CH7 1FQ				30517 5698 : Storm Netv son 3	SW P2 NC vork	Page 2 MAES I WITH S	Page 2 MAES MEURIG SW WITH SURCHARGED OUTFALL		
	Pipeline Schedule												
	Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)		
	1.000	15.484	13.5	300	Circular	16.950	15.450	1.200	15.800	14.300	1.200		
	1.001	30.023	33.4	300	Circular	15.800	14.300	1.200	15.000	13.400	1.300		
	1.002	26.254	131.3	300	Circular	15.000	13.400	1.300	15.000	13.200	1.500		
	1.003	15.148	75.7	300	Circular	15.000	13.200	1.500	15.000	13.000	1.700		
	1.004	20.152	40.3	300	Circular	15.000	13.000	1.700	15.000	12.500	2.200		
	2.000	11.580	115.8	300	Circular	15.500	12.600	2.600	15.000	12.500	2.200		

12.500

12.400

2.200 14.000

1.300 12.000

0.700 12.000 10.950

0.900 12.000 11.600

1.300

0.700

0.750

0.250

12.400

11.000

Devel

1.005 22.994

25.232

5.096 101.9

6.674 -10.3

1.006

1.007

1.008

229.9

18.0

300

Circular

300 Circular 14.000

300 Circular 12.000 11.000

150 Circular 12.000 10.950

Linde		Die	Nede	N AL L	DC	Die	Nede	5.411
LINK	US Node	(mm)	Type	Type	Node	(mm)	Type	Type
1.000	1	1200	Manhole	Adoptable	2	1200	Manhole	Adoptable
1.001	2	1200	Manhole	Adoptable	3	1200	Manhole	Adoptable
1.002	3	1200	Manhole	Adoptable	4	1200	Manhole	Adoptable
1.003	4	1200	Manhole	Adoptable	5	1200	Manhole	Adoptable
1.004	5	1200	Manhole	Adoptable	6	1200	Manhole	Adoptable
2.000	60	1200	Manhole	Adoptable	6	1200	Manhole	Adoptable
1.005	6	1200	Manhole	Adoptable	7	1200	Manhole	Adoptable
1.006	7	1200	Manhole	Adoptable	HW1		Junction	
1.007	HW2		Junction		8	1200	Manhole	Adoptable
1.008	8	1200	Manhole	Adoptable	HW3		Junction	

15.000

Manhole Schedule

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	305899.268	381091.062	16.950	1.500	1200	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							o ←			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							(1.000	15.450	300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	305883.815	381090.079	15.800	1.500	1200	1	1.000	14.300	300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							(1.001	14.300	300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	305858.503	381073.934	15.000	1.600	1200	1	1.001	13.400	300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							04	1 002	12 400	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	205026 744	201050 242	15 000	1 000	1200	(1.002	13.400	300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	305836.744	381059.243	15.000	1.800	1200		1.002	13.200	300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							$ \land$			
5 305826.745 381047.864 15.000 2.000 1200 1 1.003 13.000 300 60 305798.418 381034.486 15.500 2.900 1200 0 1.004 13.000 300 60 305798.418 381034.486 15.500 2.900 1200 0 2.000 12.600 300							° [∠] (1.003	13.200	300
0 1.004 13.000 300 60 305798.418 381034.486 15.500 2.900 1200 0 2.000 12.600 300 0 2.000 12.600 300 300 300 300	5	305826.745	381047.864	15.000	2.000	1200	1 1	1.003	13.000	300
0 1.004 13.000 300 60 305798.418 381034.486 15.500 2.900 1200 0 2.000 12.600 300 0 2.000 12.600 300 300 300 300 300							•			
60 305798.418 381034.486 15.500 2.900 1200 0 2.000 12.600 300							(1.004	13.000	300
0 2.000 12.600 300	60	305798.418	381034.486	15.500	2.900	1200	0			
0 2.000 12.600 300										
							(2.000	12.600	300

Weetwood Services Ltd	File: 20230517 5698 SW P2 NC	Page 3
Park House	Network: Storm Network	MAES MEURIG SW
Ffordd Byrnwr Gwair	Dan Hodson	WITH SURCHARGED OUTFALL
Mold, CH7 1FQ	17/05/23	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connect	ions	Link	IL (m)	Dia (mm)
6	305807.619	381041.517	15.000	2.500	1200	0	1	2.000	12.500	300
							2	1.004	12.500	300
						· ·	0	1.005	12.500	300
7	305798.302	381062.539	14.000	1.600	1200	0 <	1	1.005	12.400	300
						1	0	1.006	12.400	300
HW1	305773.163	381060.373	12.000	1.000		o	1	1.006	11.000	300
HW2	305748.134	381090.245	12.000	1.000		0 500				
							0	1.007	11.000	300
8	305743.381	381092.084	12.000	1.050	1200	° ~	1	1.007	10.950	300
							0	1.008	10.950	150
HW3	305738.672	381096.813	12.000	0.400		٩	1	1.008	11.600	150
			<u>Si</u>	mulation	Setting	<u>'S</u>				
Rainfall I	Methodology Summer CV Winter CV	FEH-13 0.750 0.840	A Skip Drain Dow	nalysis Sp Steady S n Time (n	oeed [State x nins) 2	Detailed < 240	Additio Che Cheo	onal Stor ck Disch k Discha	rage (m³∕h arge Rate(arge Volum	a) 20.0 s) x ne x
15	30 60	120	180 2	Storm Du 40 3	irations 360	480 60	0 7	20	960 1	440
	Re	turn Period	Climate Ch	nange A	Addition	al Area Ad	ditiona	al Flow		
		(years)	(CC %)	(A 9	%)	(Q %	6)		
		2		0		10		0		
		100		40		10		0		
			<u>Node 8</u>	<u>8 Online I</u>	Pump Co	<u>ontrol</u>				
Repla	Fla aces Downstrea Invert Le	p Valve x am Link √ evel (m) 10.9	50 Sw	Design D Design I vitch on d	epth (m Flow (I/s lepth (m	a) 0.700 5) 2.2 a) 0.100	Swito	ch off de	pth (m)	0.000
				Depth (m) 0.700	Flow (I/s) 2.200					

Development · Planning · Environment Weetw Development · Planning · Environment	vood Services Ltd ouse Byrnwr Gwair CH7 1FQ	File: 20230517 56 Network: Storm I Dan Hodson 17/05/23	File: 20230517 5698 SW P2 NCPage 4Network: Storm NetworkMAESDan HodsonWITH17/05/23								
Node HW2 Flow through Pond Storage Structure											
Base Inf Coefficient (m/hr) 0.000 Side Inf Coefficient (m/hr) 0.000 Safety Factor 2.0	Base Inf Coefficient (m/hr)0.00000Porosity1.00Main Channel Length (m)40.000Side Inf Coefficient (m/hr)0.00000Invert Level (m)11.000Main Channel Slope (1:X)500.0Safety Factor2.0Time to half empty (mins)Main Channel n0.020										
Inlets HW1											
De (r 0.0	pth Area Inf Area n) (m²) (m²) 000 536.0 0.0	DepthArea(m)(m²)1.000853.0	Inf Area (m ²) 0.0								
	Node 3 Carpark	Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) half empty (mins) Width (m) Length (m)	14.600 3 5.000 Inf 24.000	Slope (1:X) 500.0 Depth (m) Depth (m)							
Node 4 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) half empty (mins) Width (m) Length (m)	14.600 2 5.000 Inf 54.600	Slope (1:X) 500.0 Depth (m) Depth (m)							
	Node 5 Carpark	Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) half empty (mins) Width (m) Length (m)	14.600 0 20.200 Inf 5.000	Slope (1:X) 500.0 Depth (m) Depth (m)							
	Node 60 Carpark	Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) half empty (mins) Width (m) Length (m)	15.100 0 41.400 Inf 5.000	Slope (1:X) 500.0 Depth (m) Depth (m)							
	Node 7 Carpark	Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) half empty (mins) Width (m) Length (m)	13.600 0 5.000 Inf 7.000	Slope (1:X) 500.0 Depth (m) Depth (m)							

Results for 2 year +10% A Critical Storm Duration. Lowest mass balance: 99.41%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	15.472	0.022	3.2	0.0312	0.0000	ОК
15 minute winter	2	10	14.355	0.055	14.4	0.1211	0.0000	ОК
15 minute winter	3	10	13.496	0.096	20.8	0.1660	0.0000	ОК
15 minute winter	4	11	13.307	0.107	30.5	0.2103	0.0000	ОК
15 minute winter	5	11	13.097	0.097	40.5	0.1851	0.0000	ОК
15 minute winter	60	11	12.710	0.110	17.7	0.2227	0.0000	ОК
15 minute winter	6	11	12.712	0.212	63.7	0.3217	0.0000	ОК
15 minute winter	7	11	12.507	0.107	70.1	0.1834	0.0000	ОК
1440 minute winter	HW1	1140	11.241	0.241	4.6	0.0000	0.0000	ОК
1440 minute winter	HW2	1140	11.241	0.241	3.0	0.0000	0.0000	ОК
1440 minute winter	8	1140	11.241	0.291	1.9	0.3286	0.0000	SURCHARGED
15 minute summer	HW3	1	11.600	0.000	0.5	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	3.2	0.611	0.010	0.0851	
15 minute winter	2	1.001	3	14.2	1.027	0.073	0.4211	
15 minute winter	3	1.002	4	20.4	0.981	0.211	0.5465	
15 minute winter	4	1.003	5	30.5	1.448	0.239	0.3195	
15 minute winter	5	1.004	6	40.6	1.113	0.231	0.7355	
15 minute winter	60	2.000	6	16.8	0.513	0.163	0.4440	
15 minute winter	6	1.005	7	64.1	1.683	0.878	0.8719	
15 minute winter	7	1.006	HW1	70.1	3.077	0.267	0.5748	
15 minute winter	HW1	Flow through pond	HW2	78.5	0.205	0.004	32.3567	
15 minute winter	HW2	1.007	8	4.9	0.455	0.045	0.1479	
1440 minute winter	8	Pump	HW3	0.9				59.3

Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.41%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	15.484	0.034	8.5	0.0494	0.0000	ОК
15 minute winter	2	10	14.389	0.089	38.2	0.1981	0.0000	ОК
15 minute winter	3	12	13.596	0.196	55.5	0.3410	0.0000	ОК
15 minute winter	4	11	13.556	0.356	83.3	0.7036	0.0000	SURCHARGED
15 minute winter	5	11	13.469	0.469	97.0	0.8920	0.0000	SURCHARGED
15 minute winter	60	11	13.293	0.693	47.1	1.3988	0.0000	SURCHARGED
15 minute winter	6	11	13.262	0.762	157.3	1.1571	0.0000	SURCHARGED
15 minute winter	7	11	12.594	0.194	172.1	0.3313	0.0000	ОК
960 minute winter	HW1	930	11.455	0.455	13.4	0.0000	0.0000	ОК
960 minute winter	HW2	930	11.455	0.455	7.3	0.0000	0.0000	SURCHARGED
960 minute winter	8	930	11.455	0.505	1.9	0.5706	0.0000	SURCHARGED
15 minute summer	HW3	1	11.600	0.000	0.7	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	8.5	0.809	0.028	0.1705	
15 minute winter	2	1.001	3	37.9	1.279	0.196	0.9629	
15 minute winter	3	1.002	4	55.5	1.150	0.573	1.5659	
15 minute summer	4	1.003	5	78.8	1.580	0.617	1.0667	
15 minute winter	5	1.004	6	98.3	1.395	0.560	1.4191	
15 minute winter	60	2.000	6	42.9	0.635	0.416	0.8155	
15 minute winter	6	1.005	7	156.2	2.393	2.140	1.3635	
15 minute winter	7	1.006	HW1	171.5	4.528	0.652	0.9873	
15 minute winter	HW1	Flow through pond	HW2	163.7	0.249	0.008	87.1586	
15 minute summer	HW2	1.007	8	8.0	0.459	0.073	0.2653	
960 minute winter	8	Pump	HW3	1.6				75.2

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.41%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	15.497	0.047	16.5	0.0678	0.0000	ОК
15 minute winter	2	12	14.896	0.596	74.4	1.3211	0.0000	SURCHARGED
15 minute winter	3	13	14.820	1.420	97.7	9.5384	0.0000	FLOOD RISK
15 minute winter	4	13	14.703	1.503	124.5	6.9688	0.0000	FLOOD RISK
15 minute winter	5	11	14.595	1.595	151.7	3.0320	0.0000	SURCHARGED
15 minute winter	60	11	14.423	1.823	91.7	3.6811	0.0000	SURCHARGED
15 minute winter	6	11	14.313	1.813	238.6	2.7516	0.0000	SURCHARGED
15 minute winter	7	11	13.000	0.600	263.0	1.0256	0.0000	SURCHARGED
960 minute winter	HW1	945	11.765	0.765	24.2	0.0000	0.0000	ОК
960 minute winter	HW2	945	11.765	0.765	13.0	0.0000	0.0000	FLOOD RISK
960 minute winter	8	945	11.765	0.815	2.2	0.9217	0.0000	FLOOD RISK
15 minute summer	HW3	1	11.600	0.000	1.1	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1.000	2	16.4	0.906	0.054	0.5998	
15 minute summer	2	1.001	3	66.7	1.400	0.345	2.1142	
15 minute winter	3	1.002	4	115.1	1.634	1.188	1.8488	
15 minute winter	4	1.003	5	130.6	1.855	1.022	1.0667	
15 minute winter	5	1.004	6	157.7	2.239	0.898	1.4191	
15 minute winter	60	2.000	6	86.3	1.225	0.836	0.8155	
30 minute summer	6	1.005	7	231.1	3.283	3.167	1.6192	
15 minute winter	7	1.006	HW1	262.4	4.844	0.998	1.5953	
15 minute summer	HW1	Flow through pond	HW2	227.0	0.262	0.011	151.1642	
15 minute winter	HW2	1.007	8	-8.1	0.513	-0.074	0.3589	
240 minute winter	8	Pump	HW3	2.2				49.1

Weetwood Services Ltd Park House Ffordd Byrnwr Gwair Mold, CH7 1FQ			td	File: 20230517 5698 SW P2.pfcPage 1Network: Storm NetworkMAES MEURIG SWDan HodsonWITH SURCHARGED OUTFALL17/05/23						
			<u>Design S</u>	<u>ettings</u>						
Maximum Time o Maxi	Rainfall Return Addit Time o f Concer mum Ra	l Methodology Period (years) tional Flow (%) CV of Entry (mins) ntration (mins) ninfall (mm/hr)	FEH-13 2 0 0.750 5.00 30.00 50.0	Minimum Velocity (m/s)1.00Connection TypeLevel SoffitsMinimum Backdrop Height (m)0.200Preferred Cover Depth (m)1.200Include Intermediate Ground√Enforce best practice design rulesx						
		<u>A</u>	loptable Ma	anhole Type						
Max	Max Width (mm) Diameter (mm) Max Width (mm) Diameter (mm) 374 1200 749 1500 499 1350 900 1800									
			>900 Link+	-900 mm						
Max Depth (m) Diameter (mm) Max Depth (m) Diameter (mm) 1.500 1050 99.999 1200										
<u>Circular Link Type</u>										
		Shape Circu Barrels 1 Av	ular Aut ailable Dian 100	to Increment (mm) Follow Ground neters (mm) 150	75 x					
			Nod	<u>es</u>						
Name	Area (ha)	T of E Cove (mins) Leve (m	er Diame el (mm	ter Easting) (m)	Northing (m)	Depth (m)				
1 2 3 4 5 60 6 7 HW1 HW2 8	0.021 0.074 0.044 0.069 0.070 0.117 0.044 0.042	5.00 16.9 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 14.0 12.0 5.00 12.0	50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12 50 12	305899.268 305883.815 305883.815 305858.503 305858.503 305836.744 305826.745 3058798.418 305807.619 305798.302 305773.163 305748.134 305743.381	381091.062 381090.079 381073.934 381059.243 381047.864 381034.486 381041.517 381062.539 381060.373 381090.245 381092.084	1.500 1.500 1.600 1.800 2.000 2.900 2.500 1.600 1.000 1.000 1.050				
HW3		12.0	00	305738.672	381096.813	0.400				

Jeel	tu	000	Wee Park Ffor Mol	etwood S House dd Byrnv d, CH7 1	ervices Lto vr Gwair FQ	1	File: 202 Network Dan Hod 17/05/23	30517 5698 : : Storm Netv son 3	SW P2.pfc vork	Page 2 MAES WITH S	Page 2 MAES MEURIG SW WITH SURCHARGED OUTFALL		
Pipeline Schedule													
	Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)		
1	L.000	15.484	13.5	300	Circular	16.950	15.450	1.200	15.800	14.300	1.200		
1	L.001	30.023	33.4	300	Circular	15.800	14.300	1.200	15.000	13.400	1.300		
1	L.002	26.254	131.3	300	Circular	15.000	13.400	1.300	15.000	13.200	1.500		
1	L.003	15.148	75.7	300	Circular	15.000	13.200	1.500	15.000	13.000	1.700		

12.400

11.000

10.950

1.700 15.000 12.500

2.600 15.000 12.500

2.200 14.000 12.400

12.000

12.000 10.950

12.000 11.600

11.000

1.300

0.700

0.900

2.200

2.200

1.300

0.700

0.750

0.250

Devel

1.004 20.152

1.005 22.994

1.006

1.007

1.008

2.000 11.580 115.8

25.232

6.674

5.096 101.9

40.3

229.9

18.0

-10.3

300

300

300

300

300

150

Circular

Circular 12.000

Circular 12.000

Link	US Node	Dia (mm)	Node	MH	DS Node	Dia (mm)	Node Type	MH Type
1.000	1	1200	Manhole	Adoptable	2	1200	Manhole	Adoptable
1.001	2	1200	Manhole	Adoptable	3	1200	Manhole	Adoptable
1.002	3	1200	Manhole	Adoptable	4	1200	Manhole	Adoptable
1.003	4	1200	Manhole	Adoptable	5	1200	Manhole	Adoptable
1.004	5	1200	Manhole	Adoptable	6	1200	Manhole	Adoptable
2.000	60	1200	Manhole	Adoptable	6	1200	Manhole	Adoptable
1.005	6	1200	Manhole	Adoptable	7	1200	Manhole	Adoptable
1.006	7	1200	Manhole	Adoptable	HW1		Junction	
1.007	HW2		Junction		8	1200	Manhole	Adoptable
1.008	8	1200	Manhole	Adoptable	HW3		Junction	

Circular 15.000 13.000

Circular 15.500 12.600

Circular 15.000 12.500

14.000

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Lir	nk	IL (m)	Dia (mm)
1	305899.268	381091.062	16.950	1.500	1200					
						0 ←				
							0 1.0	00	15.450	300
2	305883.815	381090.079	15.800	1.500	1200		1 1.0	00	14.300	300
						U	0 1.0	01	14.300	300
3	305858.503	381073.934	15.000	1.600	1200	1	1 1.0	01	13.400	300
						X.				
						0 ²		02	13 400	300
4	305836.744	381059.243	15.000	1.800	1200		1 1.0	02	13.200	300
·				1.000						
						0	0 1.0	03	13.200	300
5	305826.745	381047.864	15.000	2.000	1200	1	1 1.0	03	13.000	300
						0 <				
							0 1.0	04	13.000	300
60	305798.418	381034.486	15.500	2.900	1200	0				
						\bigcirc				
							0 2.0	00	12.600	300

Weetwood Services Ltd	File: 20230517 5698 SW P2.pfc	Page 3
Park House	Network: Storm Network	MAES MEURIG SW
Ffordd Byrnwr Gwair	Dan Hodson	WITH SURCHARGED OUTFALL
Mold, CH7 1FQ	17/05/23	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connecti	ons	Link	IL (m)	Dia (mm)
6	305807.619	381041.517	15.000	2.500	1200	0	1	2.000	12.500	300
							2	1.004	12.500	300
							0	1.005	12.500	300
7	305798.302	381062.539	14.000	1.600	1200	0 <	1	1.005	12.400	300
						1	0	1.006	12.400	300
HW1	305773.163	381060.373	12.000	1.000		o1	1	1.006	11.000	300
HW2	305748.134	381090.245	12.000	1.000		0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
							0	1.007	11.000	300
8	305743.381	381092.084	12.000	1.050	1200	° ~	1	1.007	10.950	300
							0	1.008	10.950	150
HW3	305738.672	381096.813	12.000	0.400		٩	1	1.008	11.600	150
			<u>Si</u>	mulation	Setting	<u>s</u>				
Rainfall	Methodology Summer CV Winter CV	FEH-13 0.750 0.840 [A Skip Drain Dow	nalysis Sj Steady S n Time (n	oeed [State > nins) 2	Detailed 4 240	Additic Che Chec	onal Stor ck Discha k Discha	rage (m∛h arge Rate(irge Volun	a) 20.0 s) x ne x
15	30 60	120	180 2	Storm Du 40 3	irations 360	480 600) 7	20	960 1	440
	Re	turn Period	Climate Ch	nange /	Addition	al Area Ad	ditiona	al Flow		
		(years)	(CC %)	(A 9	%) 10	(Q %	6)		
		30		0		10		0		
		100		40		10		0		
			<u>Node 8</u>	3 Online	Pump Co	<u>ontrol</u>				
Repla	Fla aces Downstrea Invert Le	p Valve x am Link √ vel (m) 10.9!	50 Sw	Design D Design I vitch on d	epth (m Flow (I/s lepth (m	a) 0.700 5) 2.2 6) 0.100	Swito	h off de	pth (m)	0.000
				Depth (m) 0.700	Flow (I/s) 2.200					

Development · Planning · Gruironment Mold,	vood Services Ltd ouse Byrnwr Gwair CH7 1FQ	File: 20230517 5698 SW P2.pfcPage 4Network: Storm NetworkMAES MEURIG SWDan HodsonWITH SURCHARGED OUTFALL17/05/23							
	Node HW2 Flow throug	h Pond Storage Stru	ucture						
Base Inf Coefficient (m/hr) 0.000 Side Inf Coefficient (m/hr) 0.000 Safety Factor 2.0	000 000 Invert Time to half em	Porosity 1.00 : Level (m) 11.000 pty (mins)	Main Cha Main Cha	nnel Length (m) 40.000 nnel Slope (1:X) 500.0 Main Channel n 0.020					
Inlets HW1									
De (r 0.	pth Area Inf Area n) (m²) (m²) 000 536.0 0.0	DepthArea(m)(m²)1.000853.0	Inf Area (m²) 0.0						
Node 3 Carpark Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) half empty (mins) Width (m) Length (m)	14.600 3 5.000 Inf 24.000	Slope (1:X) 500.0 Depth (m) Depth (m)					
Node 4 Carpark Storage Structure									
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) alf empty (mins) Width (m) Length (m)	14.600 2 5.000 Inf 54.600	Slope (1:X) 500.0 Depth (m) Depth (m)					
	Node 5 Carpark	Storage Structure							
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) alf empty (mins) Width (m) Length (m)	14.600 0 20.200 Inf 5.000	Slope (1:X) 500.0 Depth (m) Depth (m)					
	Node 60 Carpark	Storage Structure							
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) alf empty (mins) Width (m) Length (m)	15.100 0 41.400 Inf 5.000	Slope (1:X) 500.0 Depth (m) Depth (m)					
	Node 7 Carpark	Storage Structure							
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 Time to h 2.0 0.30	Invert Level (m) alf empty (mins) Width (m) Length (m)	13.600 0 5.000 Inf 7.000	Slope (1:X) 500.0 Depth (m) Depth (m)					

Results for 2 year +10% A Critical Storm Duration. Lowest mass balance: 99.41%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	15.472	0.022	3.2	0.0312	0.0000	ОК
15 minute winter	2	10	14.355	0.055	14.4	0.1211	0.0000	ОК
15 minute winter	3	10	13.496	0.096	20.8	0.1660	0.0000	ОК
15 minute winter	4	11	13.307	0.107	30.5	0.2103	0.0000	ОК
15 minute winter	5	11	13.097	0.097	40.5	0.1851	0.0000	ОК
15 minute winter	60	11	12.710	0.110	17.7	0.2227	0.0000	ОК
15 minute winter	6	11	12.712	0.212	63.7	0.3217	0.0000	ОК
15 minute winter	7	11	12.507	0.107	70.1	0.1834	0.0000	ОК
1440 minute winter	HW1	1140	11.241	0.241	4.6	0.0000	0.0000	ОК
1440 minute winter	HW2	1140	11.241	0.241	3.0	0.0000	0.0000	ОК
1440 minute winter	8	1140	11.241	0.291	1.9	0.3286	0.0000	SURCHARGED
15 minute summer	HW3	1	12.000	0.400	0.5	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	3.2	0.611	0.010	0.0851	
15 minute winter	2	1.001	3	14.2	1.027	0.073	0.4211	
15 minute winter	3	1.002	4	20.4	0.981	0.211	0.5465	
15 minute winter	4	1.003	5	30.5	1.448	0.239	0.3195	
15 minute winter	5	1.004	6	40.6	1.113	0.231	0.7355	
15 minute winter	60	2.000	6	16.8	0.513	0.163	0.4440	
15 minute winter	6	1.005	7	64.1	1.683	0.878	0.8719	
15 minute winter	7	1.006	HW1	70.1	3.077	0.267	0.5748	
15 minute winter	HW1	Flow through pond	HW2	78.5	0.205	0.004	32.3567	
15 minute winter	HW2	1.007	8	4.9	0.455	0.045	0.1479	
1440 minute winter	8	Pump	HW3	0.9				59.3

Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.41%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	15.484	0.034	8.5	0.0494	0.0000	ОК
15 minute winter	2	10	14.389	0.089	38.2	0.1981	0.0000	ОК
15 minute winter	3	12	13.596	0.196	55.5	0.3410	0.0000	ОК
15 minute winter	4	11	13.556	0.356	83.3	0.7036	0.0000	SURCHARGED
15 minute winter	5	11	13.469	0.469	97.0	0.8920	0.0000	SURCHARGED
15 minute winter	60	11	13.293	0.693	47.1	1.3988	0.0000	SURCHARGED
15 minute winter	6	11	13.262	0.762	157.3	1.1571	0.0000	SURCHARGED
15 minute winter	7	11	12.594	0.194	172.1	0.3313	0.0000	ОК
960 minute winter	HW1	930	11.455	0.455	13.4	0.0000	0.0000	ОК
960 minute winter	HW2	930	11.455	0.455	7.3	0.0000	0.0000	SURCHARGED
960 minute winter	8	930	11.455	0.505	1.9	0.5706	0.0000	SURCHARGED
15 minute summer	HW3	1	12.000	0.400	0.7	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1.000	2	8.5	0.809	0.028	0.1705	
15 minute winter	2	1.001	3	37.9	1.279	0.196	0.9629	
15 minute winter	3	1.002	4	55.5	1.150	0.573	1.5659	
15 minute summer	4	1.003	5	78.8	1.580	0.617	1.0667	
15 minute winter	5	1.004	6	98.3	1.395	0.560	1.4191	
15 minute winter	60	2.000	6	42.9	0.635	0.416	0.8155	
15 minute winter	6	1.005	7	156.2	2.393	2.140	1.3635	
15 minute winter	7	1.006	HW1	171.5	4.528	0.652	0.9873	
15 minute winter	HW1	Flow through pond	HW2	163.7	0.249	0.008	87.1586	
15 minute summer	HW2	1.007	8	8.0	0.459	0.073	0.2653	
960 minute winter	8	Pump	HW3	1.6				75.2

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.41%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	15.497	0.047	16.5	0.0678	0.0000	ОК
15 minute winter	2	12	14.896	0.596	74.4	1.3211	0.0000	SURCHARGED
15 minute winter	3	13	14.820	1.420	97.7	9.5384	0.0000	FLOOD RISK
15 minute winter	4	13	14.703	1.503	124.5	6.9688	0.0000	FLOOD RISK
15 minute winter	5	11	14.595	1.595	151.7	3.0320	0.0000	SURCHARGED
15 minute winter	60	11	14.423	1.823	91.7	3.6811	0.0000	SURCHARGED
15 minute winter	6	11	14.313	1.813	238.6	2.7516	0.0000	SURCHARGED
15 minute winter	7	11	13.000	0.600	263.0	1.0256	0.0000	SURCHARGED
960 minute winter	HW1	945	11.765	0.765	24.2	0.0000	0.0000	ОК
960 minute winter	HW2	945	11.765	0.765	13.0	0.0000	0.0000	FLOOD RISK
960 minute winter	8	945	11.765	0.815	2.2	0.9217	0.0000	FLOOD RISK
15 minute summer	HW3	1	12.000	0.400	1.1	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1.000	2	16.4	0.906	0.054	0.5998	
15 minute summer	2	1.001	3	66.7	1.400	0.345	2.1142	
15 minute winter	3	1.002	4	115.1	1.634	1.188	1.8488	
15 minute winter	4	1.003	5	130.6	1.855	1.022	1.0667	
15 minute winter	5	1.004	6	157.7	2.239	0.898	1.4191	
15 minute winter	60	2.000	6	86.3	1.225	0.836	0.8155	
30 minute summer	6	1.005	7	231.1	3.283	3.167	1.6192	
15 minute winter	7	1.006	HW1	262.4	4.844	0.998	1.5953	
15 minute summer	HW1	Flow through pond	HW2	227.0	0.262	0.011	151.1642	
15 minute winter	HW2	1.007	8	-8.1	0.513	-0.074	0.3589	
240 minute winter	8	Pump	HW3	2.2				49.1

APPENDIX I

Preliminary Drainage Layout

DSH TB DRAWN CHECK DESCRIPTION Park House, Ffordd Byrnwr Gwair, Mold Weetwood CH7 1FQ Tel 01352 700045 Development • Planning • Environment info@weetwood.net www.weetwood.net KINGSCROWN GROUP Date MAY 2023 Scale (A0) 1:200 Drawn DSH Checked ΤВ Project No 5698 Drawing No PROPOSED PRELIMINARY 100 Revision P1

APPENDIX J

Dŵr Cymru Welsh Water Public Sewer Record

APPENDIX K

Dŵr Cymru Welsh Water Pre-Planning Enquiry

Mr Daniel Russell Kingscrown Group

Suites 11

Developer Services PO Box 3146 Cardiff CF30 0EH

Tel: +44 (0)800 917 2652 Fax: +44 (0)2920 740472 E.mail: developer.services@dwrcymru.com Gwasanaethau Datblygu Blwch Post 3146 Caerdydd CF30 0EH

Ffôn: +44 (0)800 917 2652 Ffacs: +44 (0)2920 740472 E.bost: developer.services@dwrcymru.com

Date: 31/03/2023 Our Ref: PPA0007729

61 St. Petersgate Stockport SK1 1DH

2nd Floor Prudential Buildings

Dear Mr Russell,

Grid Ref: 305828 381062 Site Address: Land off Mares Meurig, Meliden Development: Residential 35 dwellings

I refer to your pre-planning enquiry received relating to the above site, seeking our views on the capacity of our network of assets and infrastructure to accommodate your proposed development. Having reviewed the details submitted I can provide the following comments which should be taken into account within any future planning application for the development.

APPRAISAL

Firstly, we note that the proposal relates to 35 dwellings at land off Mares Meurig and acknowledge that the site is allocated within the Denbighshire LDP Housing Allocation (Rear of Maes Meurig 30 units) for 30 units. In reference to our representations during the LDP consultation process, namely the 'Statement of Common Ground', we can confirm that an assessment has been undertaken of the public sewerage and watermains systems to accommodate 30 units. Please note, however, this proposal comprises an increase to the LDP allocation and the following assessment takes account of an additional 5 units accordingly and informs our appraisal as follows.

Please note, notwithstanding the following assessment, we would advise there is also a mandatory requirement to undertake a pre-application consultation with all 'Specialist Consultees', including Dwr Cymru Welsh Water as the statutory water and sewerage undertaker, in accordance with Schedule 4 of Town & Country Planning (Development Management Procedure) (Wales) (Amendment) Order 2016. As a major development amounting to more than 10 units, you will be statutorily required to consult Welsh Water and a substantive response will be issued within 28 days from the date of the notice as per the requirements of Article 2E.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY.

PUBLIC SEWERAGE NETWORK

The proposed development site is located in the immediate vicinity of a predominantly combined public sewerage system which drains to Llanana Wastewater Treatment Works (WwTW).

This site is crossed by public sewers with their approximate position being marked on the attached Statutory Public Sewer Record. In accordance with the Water Industry Act 1991, Dwr Cymru Welsh Water requires access to its apparatus at all times in order to carry out maintenance and repairs. However, having regard to the indicative site layout option 4 (C1009 007 B), it appears the proposed development would be situated within the protection zone of the public 225mm sewer measured 3 metres either side of the centreline. Our strong recommendation is that your site layout is amended to take into account the location of the assets crossing the site and should be referred to in any master-planning exercises or site layout plans submitted as part of any subsequent planning application. Alternatively, it may be possible to divert the sewer if the developer applies under Section 185 of the Water Industry Act albeit may prove unviable for the purposes of this development, given the size of the sewer, and therefore recommend the proposed development is repositioned to accommodate for the required protection zone.

In the first instance, it is recommended that the developer carry out a survey to ascertain the location of this sewer and establish its relationship to the proposed development. Further information regarding Asset Protection is provided in the attached Advice & Guidance note.

You are also advised that some public sewers and lateral drains may not be recorded on our maps of public sewers because they were originally privately owned and were transferred into public ownership by nature of the Water Industry (Schemes for Adoption of Private Sewers) Regulations 2011. The presence of such assets may affect the proposal. In order to assist you may contact Dwr Cymru Welsh Water on 0800 085 3968 to establish the location and status of the apparatus in and around your site. Please be mindful that under the Water Industry Act 1991 Dwr Cymru Welsh Water has rights of access to its apparatus at all times.

Surface Water Drainage

As of 7th January 2019, this proposed development is subject to Schedule 3 of the Flood and Water Management Act 2010. The development therefore requires approval of Sustainable Drainage Systems (SuDS) features, in accordance with the 'Statutory standards for sustainable drainage systems – designing, constructing, operating and maintaining surface water drainage systems'.

We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. As highlighted in these standards, the developer is required to explore and fully exhaust all surface water drainage options in accordance with a hierarchy which states that discharge to a combined sewer shall only be made as a last resort. Disposal should be made through the hierarchical approach, preferring infiltration and, where infiltration is not possible, disposal to a surface water drainage body in liaison with the Land Drainage Authority and/or Natural Resources Wales.

It is therefore recommended that the developer consult with Denbighshire Council, as the determining SuDS Approval Body (SAB), in relation to their proposals for SuDS features. Please note, DCWW is a statutory consultee to the SAB application process and will provide comments to any SuDS proposals by response to SAB consultation. Please refer to further detailed advice relating to surface water management included in our attached Advice & Guidance note.

In addition, please note that no highway or land drainage run-off will be permitted to discharge directly or indirectly into the public sewerage system.

Foul Water Drainage – Sewerage Network

We have considered the impact of foul flows generated by the proposed development and concluded that flows can be accommodated within the public sewerage system. We advise that the flows should be connected to the combined sewer between manholes SJ05818001 and SJ05817001 located within the site boundary. Should a planning application be submitted for this development we will seek to control these points of communication via appropriate planning conditions and therefore recommend that any drainage layout or strategy submitted as part of your application takes this into account. However, should you wish for an alternative connection point to be considered please provide further information to us in the form of a drainage strategy, preferably in advance of a planning application being submitted.

You may need to apply to Dwr Cymru Welsh Water for any connection to the public sewer under Section 106 of the Water industry Act 1991. However, if the connection to the public sewer network is either via a lateral drain (i.e. a drain which extends beyond the connecting property boundary) or via a new sewer (i.e. serves more than one property), it is now a mandatory requirement to first enter into a Section 104 Adoption Agreement (Water Industry Act 1991). The design of the sewers and lateral drains must also conform to the Welsh Ministers Standards for Foul Sewers and Lateral Drains, and conform with the publication "Sewers for Adoption"- 7th Edition. Further information can be obtained via the Developer Services pages of www.dwrcymru.com.

We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'.

SEWAGE TREATMENT

No problems are envisaged with the Waste Water Treatment Works for the treatment of domestic discharges from this site.

POTABLE WATER SUPPLY

The water supply system in the immediate vicinity has insufficient capacity to serve the development and will also cause detriment to existing customers' water supply. A hydraulic modelling assessment is required to establish the scope of any reinforcement works to be completed at the same time as the provision of new water mains to serve the new development under Section 41 and Section 51 of the Water Industry Act (1991).

Information relating to our Hydraulic Modelling Assessment process is available on our website and within our guidance notes. The area planning officer will also be able to provide you within information relating to this process.

I trust the above information is helpful and will assist you in forming water and drainage strategies that should accompany any future planning application. I also attach copies of our water and sewer extract plans for the area, and a copy of our Planning Guidance Note which provides further information on our approach to the planning process, making connections to our systems and ensuring any existing public assets or infrastructure located within new development sites are protected.

Please note that our response is based on the information provided in your enquiry and should the information change we reserve the right to make a new representation. Should you have any queries or wish to discuss any aspect of our response please do not hesitate to contact our dedicated team of planning officers, either on 0800 917 2652 or via email at developer.services@dwrcymru.com

Please quote our reference number in all communications and correspondence.

Yours faithfully,

Gene

Owain George Planning Liaison Manager Developer Services

<u>Please Note</u> that demands upon the water and sewerage systems change continually; consequently the information given above should be regarded as reliable for a maximum period of 12 months from the date of this letter.

We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'.

Delivering client focussed services nationally

Flood Risk Assessments Flood Consequences Assessments Surface Water Drainage Foul Water Drainage Environmental Impact Assessments River Realignment and Restoration Water Framework Directive Assessments Environmental Permit and Land Drainage Applications Sequential, Justification and Exception Tests Utility Assessments Expert Witness and Planning Appeals Discharge of Planning Conditions

www.weetwood.net